Uncertainty Principles on Riemannian Manifolds


Book Description

In this thesis, the Heisenberg-Pauli-Weyl uncertainty principle on the real line and the Breitenberger uncertainty on the unit circle are generalized to Riemannian manifolds. The proof of these generalized uncertainty principles is based on an operator theoretic approach involving the commutator of two operators on a Hilbert space. As a momentum operator, a special differential-difference operator is constructed which plays the role of a generalized root of the radial part of the Laplace-Beltrami operator. Further, it is shown that the resulting uncertainty inequalities are sharp. In the final part of the thesis, these uncertainty principles are used to analyze the space-frequency behavior of polynomial kernels on compact symmetric spaces and to construct polynomials that are optimally localized in space with respect to the position variance of the uncertainty principle.




Analysis and Applications


Book Description

Analysis and its applications have been major areas for research in mathematics and allied fields. The fast growing power of computation has made a significant and useful impact in these areas. This has lead to computational analysis and the emergence of fields like Bezier-Bernstein methods for computer-aided geometric design, constructive approximation and wavelets, and even computational harmonic analysis. Analysis and Applications consists of research articles, including a few survey articles, by eminent mathematicians projecting trends in constructive and computational approximation, summability theory, optimal control and theory and applications of function spaces and wavelets.




Eigenfunctions of the Laplacian on a Riemannian Manifold


Book Description

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.




Geometric Properties for Parabolic and Elliptic PDE's


Book Description

This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20–24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.




On Some Aspects of Oscillation Theory and Geometry


Book Description

The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.




Hardy Inequalities on Homogeneous Groups


Book Description

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.







Differential Heterogenesis


Book Description

This book describes about unlike usual differential dynamics common in mathematical physics, heterogenesis is based on the assemblage of differential constraints that are different from point to point. The construction of differential assemblages will be introduced in the present study from the mathematical point of view, outlining the heterogeneity of the differential constraints and of the associated phase spaces, that are continuously changing in space and time. If homogeneous constraints well describe a form of swarm intelligence or crowd behaviour, it reduces dynamics to automatisms, by excluding any form of imaginative and creative aspect. With this study we aim to problematize the procedure of homogeneization that is dominant in life and social science and to outline the dynamical heterogeneity of life and its affective, semiotic, social, historical aspects. Particularly, the use of sub-Riemannian geometry instead of Riemannian one allows to introduce disjointed and autonomous areas in the virtual plane. Our purpose is to free up the dynamic becoming from any form of unitary and totalizing symmetry and to develop forms, action, thought by means of proliferation, juxtaposition, and disjunction devices. After stating the concept of differential heterogenesis with the language of contemporary mathematics, we will face the problem of the emergence of the semiotic function, recalling the limitation of classical approaches (Hjelmslev, Saussure, Husserl) and proposing a possible genesis of it from the heterogenetic flow previously defined. We consider the conditions under which this process can be polarized to constitute different planes of Content (C) and Expression (E), each one equipped with its own formed substances. A possible (but not unique) process of polarization is constructed by means of spectral analysis, that is introduced to individuate E/C planes and their evolution. The heterogenetic flow, solution of differential assemblages, gives rise to forms that are projected onto the planes, offering a first referring system for the flow, that constitutes a first degree of semiosis.




Stochastic Processes and Functional Analysis


Book Description

This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.




Dictionary of Scientific Principles


Book Description

Dictionary of Scientific Principles presents a unique and timeless collection of (almost) all known rules or laws commonly called principles, identified throughout the history of scientific development, their definition, and use. Exploring a broad range of disciplines, the book first lists more than 2,000 principles organized in a standard alphabetical order, then provides a list of subject headings for which related principles are identified. A staple addition to every library, the dictionary will also be of interest to scientists and general readers.