Mathematics and Computing


Book Description

This book constitutes the proceedings of the Third International Conference on Mathematics and Computing, ICMC 2017, held in Haldia, India, in January 2017. The 35 papers presented in this volume were carefully reviewed and selected from 129 submissions. They were organized in topical sections named: security and privacy; computing; applied mathematics; and pure mathematics.




Numerical Methods for Unconstrained Optimization and Nonlinear Equations


Book Description

This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.




Introduction to Unconstrained Optimization with R


Book Description

This book discusses unconstrained optimization with R—a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.




Calculus of Variations and Optimal Control Theory


Book Description

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control




Dynamic Optimization, Second Edition


Book Description

Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.




Optimization and Control with Applications


Book Description

A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.




Mathematical Theory of Optimization


Book Description

This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.




Derivative-Free and Blackbox Optimization


Book Description

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.




Introduction to Mathematical Optimization


Book Description

This book is intended to be a teaching aid for students of the courses in Operations Research and Mathematical Optimization for scientific faculties. Some of the basic topics of Operations Research and Optimization are considered: Linear Programming, Integer Linear Programming, Computational Complexity, and Graph Theory. Particular emphasis is given to Integer Linear Programming, with an exposition of the most recent resolution techniques, and in particular of the branch-and-cut method. The work is accompanied by numerous examples and exercises.