Undecidable Theories
Author : Alfred Tarski
Publisher : Elsevier
Page : 109 pages
File Size : 50,16 MB
Release : 1953
Category : Decidability (Mathematical logic)
ISBN : 0444533788
Author : Alfred Tarski
Publisher : Elsevier
Page : 109 pages
File Size : 50,16 MB
Release : 1953
Category : Decidability (Mathematical logic)
ISBN : 0444533788
Author : Alfred Tarski
Publisher : Dover Books on Mathematics
Page : 0 pages
File Size : 48,67 MB
Release : 2010
Category : Mathematics
ISBN : 9780486477039
This well-known book by the famed logician consists of three treatises: A General Method in Proofs of Undecidability, Undecidability and Essential Undecidability in Mathematics, and Undecidability of the Elementary Theory of Groups. 1953 edition.
Author : Dirk Siefkes
Publisher : Springer
Page : 142 pages
File Size : 19,61 MB
Release : 2006-11-15
Category : Mathematics
ISBN : 3540362525
Author : H. Andréka
Publisher : American Mathematical Soc.
Page : 146 pages
File Size : 29,96 MB
Release : 1997
Category : Mathematics
ISBN : 0821805959
"We prove that any variety of relation algebras which contains an algebra with infinitely many elements below the identity, or which contains the full group relation algebra on some infinite group (or on arbitrarily large finite groups), must have an undecidable equational theory. Then we construct an embedding of the lattice of all subsets of the natural numbers into the lattice of varieties of relation algebras such that the variety correlated with a set [italic capital]X of natural numbers has a decidable equational theory if and only if [italic capital]X is a decidable (i.e., recursive) set. Finally, we construct an example of an infinite, finitely generated, simple, representable relation algebra that has a decidable equational theory.'' -- Abstract.
Author : J.W. Addison
Publisher : Elsevier
Page : 513 pages
File Size : 45,41 MB
Release : 2014-05-27
Category : Mathematics
ISBN : 1483275345
Studies in Logic and the Foundations of Mathematics: The Theory of Models covers the proceedings of the International Symposium on the Theory of Models, held at the University of California, Berkeley on June 25 to July 11, 1963. The book focuses on works devoted to the foundations of mathematics, generally known as "the theory of models." The selection first discusses the method of alternating chains, semantic construction of Lewis's systems S4 and S5, and continuous model theory. Concerns include ordered model theory, 2-valued model theory, semantics, sequents, axiomatization, formulas, axiomatic approach to hierarchies, alternating chains, and difference hierarchies. The text also ponders on Boolean notions extended to higher dimensions, elementary theories with models without automorphisms, and applications of the notions of forcing and generic sets. The manuscript takes a look at a hypothesis concerning the extension of finite relations and its verification for certain special cases, theories of functors and models, model-theoretic methods in the study of elementary logic, and extensions of relational structures. The text also reviews relatively categorical and normal theories, algebraic theories, categories, and functors, denumerable models of theories with extra predicates, and non-standard models for fragments of number theory. The selection is highly recommended for mathematicians and researchers interested in the theory of models.
Author : S. Barry Cooper
Publisher : CRC Press
Page : 420 pages
File Size : 37,66 MB
Release : 2017-09-06
Category : Mathematics
ISBN : 1420057561
Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.
Author : Mette Leonard Høeg
Publisher : Taylor & Francis
Page : 347 pages
File Size : 20,78 MB
Release : 2022-04-28
Category : Literary Criticism
ISBN : 1000568547
Undecidability is a fundamental quality of literature and constitutive of what renders some works appealing and engaging across time and in different contexts. This book explores the essential literary notion and its role, function and effect in late nineteenth- and twentieth-century literature and literary theory. The book traces the notion historically, providing a map of central theories addressing interpretative challenges and recalcitrance in literature and showing ‘theory of uncertainty’ to be an essential strand of literary theory. While uncertainty is present in all literature, and indeed a prerequisite for any stabilisation of meaning, the Modernist period is characterised by a particularly strong awareness of uncertainty and its subforms of undecidability, ambiguity, indeterminacy, etc. With examples from seminal Modernist works by Woolf, Proust, Ford, Kafka and Musil, the book sheds light on undecidability as a central structuring principle and guiding philosophical idea in twentieth-century literature and demonstrates the analytical value of undecidability as a critical concept and reading-strategy. Defining undecidability as a specific ‘sustained’ and ‘productive’ kind of uncertainty and distinguishing it from related forms, such as ambiguity, indeterminacy and indistinction, the book develops a systematic but flexible theory of undecidability and outlines a productive reading-strategy based on the recognition of textual and interpretive undecidability.
Author : Alfred Tarski
Publisher : American Mathematical Soc.
Page : 342 pages
File Size : 48,89 MB
Release : 1987
Category : Mathematics
ISBN : 0821810413
Culminates nearly half a century of the late Alfred Tarski's foundational studies in logic, mathematics, and the philosophy of science. This work shows that set theory and number theory can be developed within the framework of a new, different and simple equational formalism, closely related to the formalism of the theory of relation algebras.
Author : Anita Wasilewska
Publisher : Springer
Page : 540 pages
File Size : 43,40 MB
Release : 2018-11-03
Category : Computers
ISBN : 3319925911
Providing an in-depth introduction to fundamental classical and non-classical logics, this textbook offers a comprehensive survey of logics for computer scientists. Logics for Computer Science contains intuitive introductory chapters explaining the need for logical investigations, motivations for different types of logics and some of their history. They are followed by strict formal approach chapters. All chapters contain many detailed examples explaining each of the introduced notions and definitions, well chosen sets of exercises with carefully written solutions, and sets of homework. While many logic books are available, they were written by logicians for logicians, not for computer scientists. They usually choose one particular way of presenting the material and use a specialized language. Logics for Computer Science discusses Gentzen as well as Hilbert formalizations, first order theories, the Hilbert Program, Godel's first and second incompleteness theorems and their proofs. It also introduces and discusses some many valued logics, modal logics and introduces algebraic models for classical, intuitionistic, and modal S4 and S5 logics. The theory of computation is based on concepts defined by logicians and mathematicians. Logic plays a fundamental role in computer science, and this book explains the basic theorems, as well as different techniques of proving them in classical and some non-classical logics. Important applications derived from concepts of logic for computer technology include Artificial Intelligence and Software Engineering. In addition to Computer Science, this book may also find an audience in mathematics and philosophy courses, and some of the chapters are also useful for a course in Artificial Intelligence.
Author : Richard L. Epstein
Publisher : Princeton University Press
Page : 545 pages
File Size : 13,82 MB
Release : 2006-07-23
Category : Mathematics
ISBN : 0691123004
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.