Understanding and Modeling Förster-type Resonance Energy Transfer (FRET)


Book Description

This Brief will focus on the functional uses and applications of FRET, starting with the derivation of FRET in the assemblies of nanostructures and subsequently giving application cases for biologists, physicists, chemists, material scientists, engineers, and those in many other fields whoever would like to FRET as a tool. The goal of this part is therefore to show both specialist and non-specialist how to use and analyze FRET in a wide range of applications.




Understanding and Modeling Förster-type Resonance Energy Transfer (FRET)


Book Description

This Brief presents a complete study of the generalized theory of Förster-type energy transfer in nanostructures with mixed dimensionality. Here the aim is to obtain a generalized theory of FRET including a comprehensive set of analytical equations for all combinations and configurations of nanostructures and deriving generic expressions for the dimensionality involved. In this brief, the modification of FRET mechanism with respect to the nanostructure serving as the donor vs. the acceptor will be included, focusing on the rate’s distance dependency and the role of the effective dielectric function in FRET, which will be a unique, useful source for those who study and model FRET.




Understanding and Modeling Förster-type Resonance Energy Transfer (FRET)


Book Description

This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.







FRET and FLIM Techniques


Book Description

This volume reviews the techniques Förster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM) providing researchers with step by step protocols and handy hints and tips. Both have become staple techniques in many biological and biophysical fields.




Applied Nanophotonics


Book Description

An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.







Principles of Fluorescence Spectroscopy


Book Description

The third edition of this established classic text reference builds upon the strengths of its very popular predecessors. Organized as a broadly useful textbook Principles of Fluorescence Spectroscopy, 3rd edition maintains its emphasis on basics, while updating the examples to include recent results from the scientific literature. The third edition includes new chapters on single molecule detection, fluorescence correlation spectroscopy, novel probes and radiative decay engineering. Includes a link to Springer Extras to download files reproducing all book artwork, for easy use in lecture slides. This is an essential volume for students, researchers, and industry professionals in biophysics, biochemistry, biotechnology, bioengineering, biology and medicine.




Fluorescence Spectroscopy in Biology


Book Description

Volume 3 of this new series focuses on brandnew research and applications in biology, biophysics and other fields of life sciences. Many frontline researcher have contributed to this highly attractive and interdisciplinary volume which spans the entire field of present fluorescence spectroscopy including nanotechnology, membrane and DNA studies and fluorescence imaging in cancer research.




FRET - Förster Resonance Energy Transfer


Book Description

FRET – Förster Resonance Energy Transfer Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Förster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.