Understanding and Predicting the Gulf of Mexico Ocean Dynamics


Book Description

For the past several years, a number of research programs have funded significant efforts to advance understanding of and forecasting capabilities for the Gulf of Mexico circulation, including the Loop Current, its associated eddies, and abyssal dynamics. One such program is the National Academies’ Understanding Gulf Ocean Systems initiative, which focuses on improving forecasts of the physical dynamics of the open Gulf of Mexico in space and time scales useful for the reduction of risks to offshore energy exploration and production, as well as for other challenges such as forecasting hurricane intensification and managing fisheries. What has been learned, how can this scientific progress be incorporated into operational models, and what are the remaining gaps in knowledge impeding predictive skill?




Understanding and Predicting the Gulf of Mexico Loop Current


Book Description

One of the most significant, energetic, yet not well understood, oceanographic features in the Americas is the Gulf of Mexico Loop Current System (LCS), consisting of the Loop Current (LC) and the Loop Current Eddies (LCEs) it sheds. Understanding the dynamics of the LCS is fundamental to understanding the Gulf of Mexico's full oceanographic system, and vice versa. Hurricane intensity, offshore safety, harmful algal blooms, oil spill response, the entire Gulf food chain, shallow water nutrient supply, the fishing industry, tourism, and the Gulf Coast economy are all affected by the position, strength, and structure of the LC and associated eddies. This report recommends a strategy for addressing the key gaps in general understanding of LCS processes, in order to instigate a significant improvement in predicting LC/LCE position, evolving structure, extent, and speed, which will increase overall understanding of Gulf of Mexico circulation and to promote safe oil and gas operations and disaster response in the Gulf of Mexico. This strategy includes advice on how to design a long-term observational campaign and complementary data assimilation and numerical modeling efforts.




Understanding and Predicting the Gulf of Mexico Loop Current


Book Description

One of the most significant, energetic, yet not well understood, oceanographic features in the Americas is the Gulf of Mexico Loop Current System (LCS), consisting of the Loop Current (LC) and the Loop Current Eddies (LCEs) it sheds. Understanding the dynamics of the LCS is fundamental to understanding the Gulf of Mexico's full oceanographic system, and vice versa. Hurricane intensity, offshore safety, harmful algal blooms, oil spill response, the entire Gulf food chain, shallow water nutrient supply, the fishing industry, tourism, and the Gulf Coast economy are all affected by the position, strength, and structure of the LC and associated eddies. This report recommends a strategy for addressing the key gaps in general understanding of LCS processes, in order to instigate a significant improvement in predicting LC/LCE position, evolving structure, extent, and speed, which will increase overall understanding of Gulf of Mexico circulation and to promote safe oil and gas operations and disaster response in the Gulf of Mexico. This strategy includes advice on how to design a long-term observational campaign and complementary data assimilation and numerical modeling efforts.










The Gulf Stream


Book Description

This publication explores the extraordinary natural phenomenon of the Gulf Stream effect, tracing its historical discovery and exploration, outlining its causes and dynamics, and examining its profound importance for the marine ecosystems of the Atlantic Ocean.




Marine Research


Book Description




Gulf Stream Workshop


Book Description

A conference on the fundamental physical processes governing the Gulf Stream circulation and its variability and to plan future observations and field studies, and numerical modelling and prediction efforts.




Marine Research, Fiscal Year 1968


Book Description




Ocean Prediction


Book Description