Understanding Clinical Research


Book Description

A complete guide to understanding and applying clinical research results Ideal for both researchers and healthcare providers Understanding Clinical Research addresses both the operational challenges of clinical trials and the needs of clinicians to comprehend the nuances of research methods to accurately analyze study results. This timely resource covers all aspects of clinical trials--from study design and statistics to regulatory oversight--and it delivers a detailed yet streamlined overview of must-know research topics. The text features an accessible three-part organization that traces the evolution of clinical research and explains the bedrock principles and unique challenges of clinical experimentation and observational research. Reinforcing this content are real-life case examples--drawn from the authors' broad experience--that put chapter concepts into action and contribute to a working knowledge of integral research techniques. FEATURES: The most definitive guide to promoting excellence in clinical research, designed to empower healthcare providers to assess a study's strengths and weaknesses with confidence and apply this knowledge to optimize patient outcomes In-depth coverage of fundamental research methods and protocols from preeminent authorities provides readers with an instructive primer and a springboard for ongoing clinical research education Clear, comprehensive three-part organization: Section One: Evolution of Clinical Research offers a succinct history of clinical trials, drug regulations, and the role of the FDA while covering the impact of information technology and academic research organizations Section Two: Principles of Clinical Experimentation takes you through the typical phases of clinical trials in the development of medical products, from initial human subject research to postapproval surveillance studies Section Three: Observational Research highlights the underlying principles, pitfalls, and methods for case-control studies, cohort studies, registries, and subgroup analyses within randomized trials




A Practical Guide to Managing Clinical Trials


Book Description

A Practical Guide to Managing Clinical Trials is a basic, comprehensive guide to conducting clinical trials. Designed for individuals working in research site operations, this user-friendly reference guides the reader through each step of the clinical trial process from site selection, to site set-up, subject recruitment, study visits, and to study close-out. Topics include staff roles/responsibilities/training, budget and contract review and management, subject study visits, data and document management, event reporting, research ethics, audits and inspections, consent processes, IRB, FDA regulations, and good clinical practices. Each chapter concludes with a review of key points and knowledge application. Unique to this book is "A View from India," a chapter-by-chapter comparison of clinical trial practices in India versus the U.S. Throughout the book and in Chapter 10, readers will glimpse some of the challenges and opportunities in the emerging and growing market of Indian clinical trials.




Sharing Clinical Trial Data


Book Description

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.




Fundamentals of Clinical Trials


Book Description

This classic reference, now updated with the newest applications and results, addresses the fundamentals of such trials based on sound scientific methodology, statistical principles, and years of accumulated experience by the three authors.




Clinical Trials


Book Description

Clinical Trials, Second Edition, offers those engaged in clinical trial design a valuable and practical guide. This book takes an integrated approach to incorporate biomedical science, laboratory data of human study, endpoint specification, legal and regulatory aspects and much more with the fundamentals of clinical trial design. It provides an overview of the design options along with the specific details of trial design and offers guidance on how to make appropriate choices. Full of numerous examples and now containing actual decisions from FDA reviewers to better inform trial design, the 2nd edition of Clinical Trials is a must-have resource for early and mid-career researchers and clinicians who design and conduct clinical trials. - Contains new and fully revised material on key topics such as biostatistics, biomarkers, orphan drugs, biosimilars, drug regulations in Europe, drug safety, regulatory approval and more - Extensively covers the "study schema" and related features of study design - Incorporates laboratory data from studies on human patients to provide a concrete tool for understanding the concepts in the design and conduct of clinical trials - Includes decisions made by FDA reviewers when granting approval of a drug as real world learning examples for readers




The Role of Purchasers and Payers in the Clinical Research Enterprise


Book Description

In a workshop organized by the Clinical Research roundtable, representatives from purchaser organizations (employers), payer organizations (health plans and insurance companies), and other stakeholder organizations (voluntary health associations, clinical researchers, research organizations, and the technology community) came together to explore: What do purchasers and payers need from the Clinical Research Enterprise? How have current efforts in clinical research met their needs? What are purchasers, payers, and other stakeholders willing to contribute to the enterprise? This book documents these discussions and summarizes what employers and insurers need from and are willing to contribute to clinical research from both a business and a national health care perspective.




The Prevention and Treatment of Missing Data in Clinical Trials


Book Description

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.




Testing Treatments


Book Description

This work provides a thought-provoking account of how medical treatments can be tested with unbiased or 'fair' trials and explains how patients can work with doctors to achieve this vital goal. It spans the gamut of therapy from mastectomy to thalidomide and explores a vast range of case studies.




Virtual Clinical Trials


Book Description

Successful drug development relies on accurate and efficient clinical trials to deliver the best and most effective pharmaceuticals and clinical care to patients. However, the current model for clinical trials is outdated, inefficient and costly. Clinical trials are limited by small sample sizes that do not reflect variations among patients in the real world, financial burdens on participants, and slow processes, and these factors contribute to the disconnect between clinical research and clinical practice. On November 28-29, the National Academies of Sciences, Engineering, and Medicine convened a workshop to investigate the current clinical trials system and explore the potential benefits and challenges of implementing virtual clinical trials as an enhanced alternative for the future. This publication summarizes the presentations and discussions from the workshop.




Small Clinical Trials


Book Description

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.