Understanding Statistics Using R


Book Description

This book was written to provide resource materials for teachers to use in their introductory or intermediate statistics class. The chapter content is ordered along the lines of many popular statistics books so it should be easy to supplement the content and exercises with class lecture materials. The book contains R script programs to demonstrate important topics and concepts covered in a statistics course, including probability, random sampling, population distribution types, role of the Central Limit Theorem, creation of sampling distributions for statistics, and more. The chapters contain T/F quizzes to test basic knowledge of the topics covered. In addition, the book chapters contain numerous exercises with answers or solutions to the exercises provided. The chapter exercises reinforce an understanding of the statistical concepts presented in the chapters. An instructor can select any of the supplemental materials to enhance lectures and/or provide additional coverage of concepts and topics in their statistics book.




Learning Statistics with R


Book Description

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com




Learning Statistics Using R


Book Description

Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.




An Introduction to Statistical Learning


Book Description

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.




Discovering Statistics Using R


Book Description

Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field′s books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you′re doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book′s accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.




Understanding and Applying Basic Statistical Methods Using R


Book Description

Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.




Introductory Statistics with R


Book Description

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.




Using R for Introductory Statistics


Book Description

The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.




Basic Statistics with R


Book Description

Basic Statistics with R: Reaching Decisions with Data provides an understanding of the processes at work in using data for results. Sections cover data collection and discuss exploratory analyses, including visual graphs, numerical summaries, and relationships between variables - basic probability, and statistical inference - including hypothesis testing and confidence intervals. All topics are taught using real-data drawn from various fields, including economics, biology, political science and sports. Using this wide variety of motivating examples allows students to directly connect and make statistics essential to their field of interest, rather than seeing it as a separate and ancillary knowledge area. In addition to introducing students to statistical topics using real data, the book provides a gentle introduction to coding, having the students use the statistical language and software R. Students learn to load data, calculate summary statistics, create graphs and do statistical inference using R with either Windows or Macintosh machines. - Features real-data to give students an engaging practice to connect with their areas of interest - Evolves from basic problems that can be worked by hand to the elementary use of opensource R software - Offers a direct, clear approach highlighted by useful visuals and examples




Learning Statistics Through Playing Cards


Book Description

By using a simple pack of playing cards, the author of this book explains the important concepts of statistics covering many of the topics included in introductory statistics courses. He demonstrates: populations and variables; parameters; percentages; probability and sampling; sampling distribution; estimation; hypothesis testing; and two-by-two tables. Each chapter ends with a series of exercises to help the student manipulate the concept under discussion. Answers are included at the back of the text.