Understanding the Tensile Properties of Concrete


Book Description

The response of concrete under tensile loading is crucial for most applications because concrete is much weaker in tension than in compression. Understanding the response mechanisms of concrete under tensile conditions is therefore key to understanding and using concrete in structural applications. Understanding the Tensile Properties of Concrete Second Edition summarises key recent research in this important subject area. After an introduction to concrete, the book is divided into two parts: part one on static response and part two on dynamic response. Part one starts with a summary chapter on the most important parameters that affect the tensile response of concrete. Chapters show how multi scale modelling is used to relate concrete composition to tensile properties. Part two focuses on dynamic response and starts with an introduction to the different regimes of dynamic loading, ranging from the low frequency loading by wind or earthquakes up to the extreme dynamic conditions due to explosions and ballistic impacts. Following chapters review dynamic testing techniques and devices that deal with the various regimes of dynamic loading. Later chapters highlight the dynamic behaviour of concrete from different viewpoints, and the book ends with a chapter on practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications. Drawing on the work of some of the leading experts in the field, the book is fully updated and will be a valuable reference for civil and structural engineers as well as those researching this important material. - Presents recent research in the areas of understanding the response mechanisms of concrete under tensile conditions - Provides a summary of the most important parameters that affect the tensile response of concrete and shows how multi scale modeling is used to relate concrete composition to tensile properties - Highlights the dynamic behavior of concrete from different viewpoints and provides practical examples of how detailed knowledge on tensile properties is used by engineers in structural applications - Presents recent advancements in tensile strength determination under static and dynamic loading conditions for concrete structures - Covers HSFRC and FRHSC - Presents new work on non-local models and damage modeling, the dynamic increase factor for tensile strength, fracture energy and anchors, and slop stabilization




Reinforced Concrete Design


Book Description




Compressive Strength of Concrete


Book Description

Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.




Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary


Book Description

The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.




Strength and Related Properties of Concrete


Book Description

This work discusses the variations that occur in the strength of concrete and presents numerical methods useful in interpreting these variations. Individual chapters include the relationship between composition and strength of concrete.




Regeneration of the Built Environment from a Circular Economy Perspective


Book Description

This open access book explores the strategic importance and advantages of adopting multidisciplinary and multiscalar approaches of inquiry and intervention with respect to the built environment, based on principles of sustainability and circular economy strategies. A series of key challenges are considered in depth from a multidisciplinary perspective, spanning engineering, architecture, and regional and urban economics. These challenges include strategies to relaunch socioeconomic development through regenerative processes, the regeneration of urban spaces from the perspective of resilience, the development and deployment of innovative products and processes in the construction sector in order to comply more fully with the principles of sustainability and circularity, and the development of multiscale approaches to enhance the performance of both the existing building stock and new buildings. The book offers a rich selection of conceptual, empirical, methodological, technical, and case study/project-based research. It will be of value for all who have an interest in regeneration of the built environment from a circular economy perspective.




Mechanical Properties of Self-Compacting Concrete


Book Description

The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC and underwater concrete.




Measuring, Monitoring and Modeling Concrete Properties


Book Description

This state-of-the-art volume covers the latest and future trends in measuring, monitoring and modeling the properties of cement based materials. The book contains 94 papers and presents the latest research work of renowned experts. It acts as a survey of the most up-to-date research in the field.




Self-healing Materials


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students




CEB-FIP Model Code 1990


Book Description

This design code for concrete structures is the result of a complete revision to the former Model Code 1978, which was produced jointly by CEB and FIP. The 1978 Model Code has had a considerable impact on the national design codes in many countries. In particular, it has been used extensively for the harmonisation of national design codes and as basic reference for Eurocode 2. The 1990 Model Code provides comprehensive guidance to the scientific and technical developments that have occurred over the past decade in the safety, analysis and design of concrete structures. It has already influenced the codification work that is being carried out both nationally and internationally and will continue so to do.