Uniform Distribution and Quasi-Monte Carlo Methods


Book Description

This book is summarizing the results of the workshop "Uniform Distribution and Quasi-Monte Carlo Methods" of the RICAM Special Semester on "Applications of Algebra and Number Theory" in October 2013. The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology. The goal of this book is to give an overview of recent developments in uniform distribution theory, quasi-Monte Carlo methods, and their applications, presented by leading experts in these vivid fields of research.




Random Number Generation and Quasi-Monte Carlo Methods


Book Description

Tremendous progress has taken place in the related areas of uniform pseudorandom number generation and quasi-Monte Carlo methods in the last five years. This volume contains recent important work in these two areas, and stresses the interplay between them. Some developments contained here have never before appeared in book form. Includes the discussion of the integrated treatment of pseudorandom numbers and quasi-Monte Carlo methods; the systematic development of the theory of lattice rules and the theory of nets and (t,s)-sequences; the construction of new and better low-discrepancy point sets and sequences; Nonlinear congruential methods; the initiation of a systematic study of methods for pseudorandom vector generation; and shift-register pseudorandom numbers. Based on a series of 10 lectures presented by the author at a CBMS-NSF Regional Conference at the University of Alaska at Fairbanks in 1990 to a selected group of researchers, this volume includes background material to make the information more accessible to nonspecialists.




Introduction to Quasi-Monte Carlo Integration and Applications


Book Description

This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science.




Random Number Generation and Monte Carlo Methods


Book Description

Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.




Monte Carlo and Quasi-Monte Carlo Sampling


Book Description

Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.




Contributions to the Theory of Monte Carlo and Quasi-Monte Carlo Methods


Book Description

Quasi-Monte Carlo methods, which are often described as deterministic versions of Monte Carlo methods, were introduced in the 1950s by number theoreticians. They improve several deficiencies of Monte Carlo methods; such as providing estimates with deterministic bounds and avoiding the paradoxical difficulty of generating random numbers in a computer. However, they have their own drawbacks. First, although they provide faster convergence than Monte Carlo methods asymptotically, the advantage may not be practical to obtain in "high" dimensional problems. Second, there is not a practical way to measure the error of a quasi-Monte Carlo simulation. Finally, unlike Monte Carlo methods, there is a scarcity of error reduction techniques for these methods. In this dissertation, we attempt to provide remedies for the disadvantages of quasi-Monte Carlo methods mentioned above. In the first part of the dissertation, a hybrid-Monte Carlo sequence designed to obtain error reduction in high dimensions is studied. Probabilistic results on the discrepancy of this sequence as well as results obtained by applying the sequence to problems from numerical integration and mathematical finance are presented. In the second part of the dissertation, a new hybrid-Monte Carlo method is introduced, in an attempt to obtain a practical statistical error analysis using low-discrepancy sequences. It is applied to problems from mathematical finance and particle transport theory to compare its effectiveness with the conventional methods. In the last part of the dissertation, a generalized quasi-Monte Carlo integration rule is introduced. A Koksma-Hlawka type inequality for the rule is proved, using a new concept for the variation of a function. As a consequence of the rule, error reduction techniques and in particular an "importance sampling" type statement are derived. Problems from different disciplines are used as practical tests for our methods. The numerical results obtained in favor of the methods suggest the practical advantages that can be realized by their use in a wide variety of applications.




Random and Quasi-Random Point Sets


Book Description

This volume is a collection of survey papers on recent developments in the fields of quasi-Monte Carlo methods and uniform random number generation. We will cover a broad spectrum of questions, from advanced metric number theory to pricing financial derivatives. The Monte Carlo method is one of the most important tools of system modeling. Deterministic algorithms, so-called uniform random number gen erators, are used to produce the input for the model systems on computers. Such generators are assessed by theoretical ("a priori") and by empirical tests. In the a priori analysis, we study figures of merit that measure the uniformity of certain high-dimensional "random" point sets. The degree of uniformity is strongly related to the degree of correlations within the random numbers. The quasi-Monte Carlo approach aims at improving the rate of conver gence in the Monte Carlo method by number-theoretic techniques. It yields deterministic bounds for the approximation error. The main mathematical tool here are so-called low-discrepancy sequences. These "quasi-random" points are produced by deterministic algorithms and should be as "super" uniformly distributed as possible. Hence, both in uniform random number generation and in quasi-Monte Carlo methods, we study the uniformity of deterministically generated point sets in high dimensions. By a (common) abuse oflanguage, one speaks of random and quasi-random point sets. The central questions treated in this book are (i) how to generate, (ii) how to analyze, and (iii) how to apply such high-dimensional point sets.




Digital Nets and Sequences


Book Description

Indispensable for students, invaluable for researchers, this comprehensive treatment of contemporary quasi–Monte Carlo methods, digital nets and sequences, and discrepancy theory starts from scratch with detailed explanations of the basic concepts and then advances to current methods used in research. As deterministic versions of the Monte Carlo method, quasi–Monte Carlo rules have increased in popularity, with many fruitful applications in mathematical practice. These rules require nodes with good uniform distribution properties, and digital nets and sequences in the sense of Niederreiter are known to be excellent candidates. Besides the classical theory, the book contains chapters on reproducing kernel Hilbert spaces and weighted integration, duality theory for digital nets, polynomial lattice rules, the newest constructions by Niederreiter and Xing and many more. The authors present an accessible introduction to the subject based mainly on material taught in undergraduate courses with numerous examples, exercises and illustrations.




Monte Carlo and Quasi-Monte Carlo Methods 1996


Book Description

Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.