Unimolecular Reaction Dynamics


Book Description

This book provides a penetrating and comprehensive description of energy selected reactions from a theoretical as well as experimental view. Three major aspects of unimolecular reactions involving the preparation of the reactants in selected energy states, the rate of dissociation of the activated molecule, and the partitioning of the excess energy among the final products, are fully discussed with the aid of 175 illustrations and over 1,000 references, most from the recent literature. Examples of both neutral and ionic reactions are presented. Many of the difficult topics are discussed at several levels of sophistication to allow access by novices as well as experts. Among the topics covered for the first time in monograph form is a discussion of highly excited vibrational/rotational states and intramolecular vibrational energy redistribution. Problems associated with the application of RRKM theory are discussed with the aid of experimental examples. Detailed comparisons are also made between different statistical models of unimolecular decomposition. Both quantum and classical models not based on statistical assumptions are described. Finally, a chapter devoted to the theory of product energy distribution includes the application of phase space theory to the dissociation of small and large clusters. The work will be welcomed as a valuable resource by practicing researchers and graduate students in physical chemistry, and those involved in the study of chemical reaction dynamics.




The Chemical Dynamics and Kinetics of Small Radicals


Book Description

This book highlights recent progress in the chemistry of radicals. Developments include the growing use of lasers to generate radicals, the application of lasers to provide state, angular, polarization, energy and real-time resolution in kinetics and dynamics experiments, the development of theories for handling the reactions of radicals, and the simulation of the reaction dynamics of increasingly larger systems for direct comparison to experimental results. The book emphasizes the increasing interaction between experimental dynamics, kinetics and theory. It is appropriate for chemistry graduate students and researchers about to enter the field. However, the discussions of some topics progress to a more advanced level so that even an expert will find the book useful.




Advances in Chemical Reaction Dynamics


Book Description

This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidation of reaction dynamics and structural changes occurring during the course of ultrafast chemical reactions; propagation of turbulent flames and detonations in gaseous· energetic systems are also discussed in some detail. In addition a large portion of the program was devoted to current experimental and theoretical studies of the structure of the transition state as inferred from product state distributions; translational energy release in the photodissociation of aromatic molecules; intramolecu lar and intraionic dynamic processes.




Chemical Dynamics Studies of Reactions in Energetic Materials


Book Description

We have carried out a research program to investigate the chemical dynamics of unimolecular reactions in large polyatomic molecules. The purpose of the studies is an improved understanding of the fundamental behavior of highly excited, reactive molecules, with an emphasis on energetic materials. We have made some significant progress in extending theoretical chemical dynamics calculations to reactions in large molecules, as illustrated by our explicit, full-dimensional classical dynamics study of the unimolecular decomposition of RDX. Leading up to this study of RDX, we performed a long series of dynamics calculations(2-30) for a variety of molecules to determine the important factors for accurately simulating processes in polyatomic molecules.




The Chemical Dynamics and Kinetics of Small Radicals


Book Description

This book highlights recent progress in the chemistry of radicals. Developments include the growing use of lasers to generate radicals, the application of lasers to provide state, angular, polarization, energy and real-time resolution in kinetics and dynamics experiments, the development of theories for handling the reactions of radicals, and the simulation of the reaction dynamics of increasingly larger systems for direct comparison to experimental results. The book emphasizes the increasing interaction between experimental dynamics, kinetics and theory. It is appropriate for chemistry graduate students and researchers about to enter the field. However, the discussions of some topics progress to a more advanced level so that even an expert will find the book useful.




Reaction Dynamics


Book Description

During the last 30 years our knowledge and understanding of molecular processes has followed the development of increasingly sophisticated tech niques for studying fast reactions. Although the results are reported in papers and reviews, it is sometimes difficult for those not themselves active in these fields to find their way through the mass of published material. We hope that each book in this series will present a clear account of the present state of knowledge in a particular field of physical chemistry to research workers in related fields, to research students, and for the preparation of undergraduate and post-graduate lectures. Each chapter describes the theoretical develop ment of one area of study and the appropriate experimental techniques; the results presented are chosen to illustrate the theory rather than to attempt a comprehensive review. The first volume published in 1972 was concerned with the reactions of small molecules and free radicals in the gas phase. The development of flash photolysis in the 1950s paved the way by making it possible to generate free radicals in sufficient concentration for a spectroscopic" snapshot" to reveal their molecular structure. Their role in kinetic systems could then be followed directly, rather than be inferred from mechanism. The shock tube enabled gas mixtures to be heated to any desired temperature in a time which was shorter than subsequent chemical reactions. Discharge-flow methods enabled the reactions of atoms and free radicals to be studied directly.




Molecular Reaction Dynamics


Book Description

Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.




Reaction and Molecular Dynamics


Book Description

The amazing growth of computational resources has made possible the modeling of complex chemical processes. To develop these models one needs to proceed from rigorous theoretical methods to approximate ones by exploiting the potential of innovative architectural features of modern concurrent processors. This book reviews some of the most advanced theoretical approaches in the field of molecular reaction dynamics in order to cope as rigorously as possible with the complexity of real systems.




Chemical Dynamics Studies of Unimolecular Reactions in Energetic Materials


Book Description

Research performed over the period August 1, 1992 to July 31, 1996 supported by the U.S. Army Research Office (Grant number; DAAL03-92-G-0358) is described. This research project was concerned with the development of methods and simulations to study the unimolecular reaction dynamics of polyatomic molecules of interest as energetic materials. The research consisted of classical dynamics studies of the fundamental dynamics, mode selectivity, IVR in highly excited polyatomic molecules, and simulations of unimolecular reactions. Much of the effort was devoted to developing an improved potential energy surface to describe the unimolecular dissociation of RDX (hexahydro-1-3-5-trinitro-s-triazine).