Universal Fluctuations


Book Description

The main purpose of this book is to present, in a comprehensive and progressive way, the appearance of universal limit probability laws in physics, and their connection with the recently developed scaling theory of fluctuations. Arising from the probability theory and renormalization group methods, this novel approach has been proved recently to provide efficient investigative tools for the collective features that occur in any finite system.The mathematical background is self-contained and is formulated in terms which are easy to apply to the physical context. After illustrating the problem of anomalous diffusion, the book reviews recent advances in nuclear and high energy physics, where the limit laws are now recognized as being able to classify different phases of a system undergoing the pseudo-critical behaviour. A new description of the hadronic matter in terms of the fluctuation scaling is appearing as a consequence of this approach.




Introduction to Condensed Matter Physics


Book Description

This is volume 1 of two-volume book that presents an excellent, comprehensive exposition of the multi-faceted subjects of modern condensed matter physics, unified within an original and coherent conceptual framework. Traditional subjects such as band theory and lattice dynamics are tightly organized in this framework, while many new developments emerge spontaneously from it. In this volume,? Basic concepts are emphasized; usually they are intuitively introduced, then more precisely formulated, and compared with correlated concepts.? A plethora of new topics, such as quasicrystals, photonic crystals, GMR, TMR, CMR, high Tc superconductors, Bose-Einstein condensation, etc., are presented with sharp physical insights.? Bond and band approaches are discussed in parallel, breaking the barrier between physics and chemistry.? A highly accessible chapter is included on correlated electronic states ? rarely found in an introductory text.? Introductory chapters on tunneling, mesoscopic phenomena, and quantum-confined nanostructures constitute a sound foundation for nanoscience and nanotechnology.? The text is profusely illustrated with about 500 figures.




Theory of Fluctuations in Superconductors


Book Description

This book presents a complete encyclopedia of superconducting fluctuations, summarising the last thirty-five years of work in the field. The first part of the book is devoted to an extended discussion of the Ginzburg-Landau phenomenology of fluctuations in its thermodynamical and time-dependent versions and its various applications. The second part deals with microscopic justification of the Ginzburg-Landau approach and presents the diagrammatic theory of fluctuations. The third part is devoted to a less-detailed review of the manifestation of fluctuations in observables: diamagnetism, magnetoconductivity, various tunneling characteristics, thermoelectricity, and NMR relaxation. The final chapters turn to the manifestation of fluctuations in unconventional superconducting systems: nanodrops, nanorings, Berezinsky-Kosterlitz-Thouless state, quantum phase transition between superconductor and insulator, and thermal and quantum fluctuations in weak superconducting systems. The book ends with a brief discussion on theories of high temperature superconductivity, where fluctuations appear as the possible protagonist of this exciting phenomenon.




Advanced MOS Device Physics


Book Description

VLSI Electronics Microstructure Science, Volume 18: Advanced MOS Device Physics explores several device physics topics related to metal oxide semiconductor (MOS) technology. The emphasis is on physical description, modeling, and technological implications rather than on the formal aspects of device theory. Special attention is paid to the reliability physics of small-geometry MOSFETs. Comprised of eight chapters, this volume begins with a general picture of MOS technology development from the device and processing points of view. The critical issue of hot-carrier effects is discussed, along with the device engineering aspects of this problem; the emerging low-temperature MOS technology; and the problem of latchup in scaled MOS circuits. Several device models that are suitable for use in circuit simulators are also described. The last chapter examines novel electron transport effects observed in ultra-small MOS structures. This book should prove useful to semiconductor engineers involved in different aspects of MOS technology development, as well as for researchers in this field and students of the corresponding disciplines.




Patterns of Symmetry Breaking


Book Description

The conceptofspontaneous symmetry breaking plays a fundamental role in contemporary physics. It is essential for the description of degenerate ground states, massless modes, and topological defects. Examples are abundant in condensed matter physics, atomic and particle physics, as well as in astro physics and cosmology. In fact, spontaneous symmetry breaking can be re garded as a cornerstone ofa whole branch ofphysics which intersects the above mentioned traditionally distinct fields. In the year 2000 the European Science Foundation (ESF) started the Pro gramme "Cosmology in the Laboratory" (COSLAB), with the goal to search for and to develop analogies betweencondensed matterphysics, particle physics, and cosmology. Not surprisingly, spontaneous symmetry breaking is among the most useful notions in that endeavour. It has been decided that in the sec ond year of the Programme a School should be held in order to work out and deliver to a wide audience of students synthetic overviews of achievements and of current research topics of COSLAB. This idea has been supported by the Scientific and Environmental Affairs Division of NATO by including the School in the renowned series of its Advanced Study Institutes. The School, entitled" Patterns of Symmetry Breaking", was held in Cracow during 16-28 September 2002. It gathered 17 lecturers and about 60 students. The present volume contains notes ofmost of the lectures from that School. We hope that of the physics of spon it will convey to the reader the breadth and the beauty taneous symmetry breaking.




Galaxy Distances and Deviations from Universal Expansion


Book Description

It was a general feeling among those who attended the NATO / ARW meeting on the Galaxy Distances and Deviations from Universal Expansion, that during the week in Hawaii a milestone had been passed in work on the distance scale. While not until the last minute did most of the participants know who else would be attending, no one was displeased with the showing. As it turned out, scarcely a single active worker in the field of the distance scale missed the event. Few knew all of the outstanding work that was to be revealed, and/or the long-term programs that were to be encapsulated in the first few days. Areas of general agreement were pinpointed with candid speed, and most of the discussion moved on quickly to new data, and areas deserving special new attention. As quickly as one project was reported as being brought successfully to a close, a different group would report on new discoveries with new directions to go. New data, new phenomena; but the sentiment was that we were building on a much safer foundation, even if the Universe was unfolding in a much more complex and unexpected way than was previously anticipated. In editing these proceedings a decision was made well in advance of the Meet ing that no attempt would made to record the discussion. This was done for many reasons.




Nonequilibrium Physics at Short Time Scales


Book Description

This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.




Dynamics, Games and Science II


Book Description

Dynamics, Games and Science I and II are a selection of surveys and research articles written by leading researchers in mathematics. The majority of the contributions are on dynamical systems and game theory, focusing either on fundamental and theoretical developments or on applications to modeling in biology, ecomonics, engineering, finances and psychology. The papers are based on talks given at the International Conference DYNA 2008, held in honor of Mauricio Peixoto and David Rand at the University of Braga, Portugal, on September 8-12, 2008. The aim of these volumes is to present cutting-edge research in these areas to encourage graduate students and researchers in mathematics and other fields to develop them further.




Phase Transition Approach To High Temperature Superconductivity - Universal Properties Of Cuprate Superconductors


Book Description

The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort — which still persists after more than a decade — to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications.During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question.This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course.




Electron Transport in Nanostructures and Mesoscopic Devices


Book Description

This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.