Hyperspectral Remote Sensing of Agriculture and Vegetation


Book Description

This book shows recent and innovative applications of the use of hyperspectral technology for optimal quantification of crop, vegetation, and soil biophysical variables at various spatial scales, which can be an important aspect in agricultural management practices and monitoring. The articles collected inside the book are intended to help researchers and farmers involved in precision agriculture techniques and practices, as well as in plant nutrient prediction, to a higher comprehension of strengths and limitations of the application of hyperspectral imaging to agriculture and vegetation. Hyperspectral remote sensing for studying agriculture and natural vegetation is a challenging research topic that will remain of great interest for different sciences communities in decades.




Hyperspectral Remote Sensing


Book Description

Hyperspectral Remote Sensing: Theory and Applications offers the latest information on the techniques, advances and wide-ranging applications of hyperspectral remote sensing, such as forestry, agriculture, water resources, soil and geology, among others. The book also presents hyperspectral data integration with other sources, such as LiDAR, Multi-spectral data, and other remote sensing techniques. Researchers who use this resource will be able to understand and implement the technology and data in their respective fields. As such, it is a valuable reference for researchers and data analysts in remote sensing and Earth Observation fields and those in ecology, agriculture, hydrology and geology. - Includes the theory of hyperspectral remote sensing, along with techniques and applications across a variety of disciplines - Presents the processing, methods and techniques utilized for hyperspectral remote sensing and in-situ data collection - Provides an overview of the state-of-the-art, including algorithms, techniques and case studies




Introduction to Unmanned Aircraft Systems


Book Description

Introduction to Unmanned Aircraft Systems surveys the fundamentals of unmanned aircraft system (UAS) operations, from sensors, controls, and automation to regulations, safety procedures, and human factors. It is designed for the student or layperson and thus assumes no prior knowledge of UASs, engineering, or aeronautics. Dynamic and well-illustrated, the first edition of this popular primer was created in response to a need for a suitable university-level textbook on the subject. Fully updated and significantly expanded, this new Second Edition: Reflects the proliferation of technological capability, miniaturization, and demand for aerial intelligence in a post-9/11 world Presents the latest major commercial uses of UASs and unmanned aerial vehicles (UAVs) Enhances its coverage with greater depth and support for more advanced coursework Provides material appropriate for introductory UAS coursework in both aviation and aerospace engineering programs Introduction to Unmanned Aircraft Systems, Second Edition capitalizes on the expertise of contributing authors to instill a practical, up-to-date understanding of what it takes to safely operate UASs in the National Airspace System (NAS). Complete with end-of-chapter discussion questions, this book makes an ideal textbook for a first course in UAS operations.




UAVs for Vegetation Monitoring


Book Description

This book compiles a set of original and innovative papers included in the Special Issue on UAVs for vegetation monitoring, which proves the wide scope of UAVs in very diverse vegetation applications, both in agricultural and forestry scenarios, ranging from the characterization of relevant vegetation features to the detection of plant or crop stressors. New methods and techniques are developed and applied to diverse vegetation scenarios to meet the main challenge of sustainability.




Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation


Book Description

Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume IV, Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation discusses the use of hyperspectral or imaging spectroscopy data in numerous specific and advanced applications, such as forest management, precision farming, managing invasive species, and local to global land cover change detection. It emphasizes the importance of hyperspectral remote sensing tools for studying vegetation processes and functions as well as the appropriate use of hyperspectral data for vegetation management practices. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume IV through the editors’ perspective. Key Features of Volume IV: Guides readers to harness the capabilities of the most recent advances in applying hyperspectral remote sensing technology to the study of terrestrial vegetation. Includes specific applications on agriculture, crop management practices, study of crop stress and diseases, crop characteristics based on inputs (e.g., nitrogen, irrigation), study of vegetation impacted by heavy metals, gross and net primary productivity studies, light use efficiency studies, crop water use and actual evapotranspiration studies, phenology monitoring, land use and land cover studies, global change studies, plant species detection, wetland and forest characterization and mapping, crop productivity and crop water productivity mapping, and modeling. Encompasses hyperspectral or imaging spectroscopy data in narrow wavebands used across visible, red-edge, near-infrared, far-infrared, shortwave infrared, and thermal portions of the spectrum. Explains the implementation of hyperspectral remote sensing data processing mechanisms in a standard, fast, and efficient manner for their applications. Discusses cloud computing to overcome hyperspectral remote sensing massive big data challenges. Provides hyperspectral analysis of rocky surfaces on the earth and other planetary systems.




Applications of Small Unmanned Aircraft Systems


Book Description

Advances in high spatial resolution mapping capabilities and the new rules established by the Federal Aviation Administration in the United States for the operation of Small Unmanned Aircraft Systems (sUAS) have provided new opportunities to acquire aerial data at a lower cost and more safely versus other methods. A similar opening of the skies for sUAS applications is being allowed in countries across the world. Also, sUAS can access hazardous or inaccessible areas during disaster events and provide rapid response when needed. Applications of Small Unmanned Aircraft systems: Best Practices and Case Studies is the first book that brings together the best practices of sUAS applied to a broad range of issues in high spatial resolution mapping projects. Very few sUAS pilots have the knowledge of how the collected imagery is processed into value added mapping products that have commercial and/or academic import. Since the field of sUAS applications is just a few years old, this book covers the need for a compendium of case studies to guide the planning, data collection, and most importantly data processing and map error issues, with the range of sensors available to the user community. Written by experienced academics and professionals, this book serves as a guide on how to formulate sUAS based projects, from choice of a sUAS, flight planning for a particular application, sensors and data acquisition, data processing software, mapping software and use of the high spatial resolution maps produced for particular types of geospatial modeling. Features: Focus on sUAS based data acquisition and processing into map products Broad range of case studies by highly experienced academics Practical guidance on sUAS hardware, sensors, and software utilized Compilation of workflow insights from expert professors and professionals Relevant to academia, government, and industry Positional and thematic map accuracy, UAS curriculum development and workflow replicability issues This book would be an excellent text for upper-level undergraduate to graduate level sUAS mapping application courses. It is also invaluable as a reference for educators designing sUAS based curriculum as well as for potential sUAS users to assess the scope of mapping projects that can be done with this technology.




Agri-Tech Approaches for Nutrients and Irrigation Water Management


Book Description

This book includes concepts, methodologies, and techniques used in soil nutrients and irrigation water management with regional and global prospects. This book accommodates up-to-date approaches to agricultural technologies along with future directions and compiles a wide range of articles ranging from soil moisture flow, nutrient dynamics, crop water estimation techniques, approaches to improve crop water productivity and soil health, crop simulation modeling, and remote sensing/GIS applications. The book also includes chapters on climate-resilient agriculture, advances in big data and machine-learning techniques, IoT, plasma technology, seed priming, and precision farming techniques and their environmental/economic impacts. Features: • Discusses applications sustainable technologies for soil nutrients and irrigation water management at multi-scale. • Covers application of remote sensing/GIS, big data and machine learning, IoT, plasma technology, seed priming, and precision farming techniques for nutrients and water management. • Reviews concepts, methodologies, and techniques being used in soil nutrients and irrigation water management. • Provides up-to-date information as well as future directions in the field of nutrients and agricultural water management. This book is aimed at researchers and graduate students in agriculture, water resources, environment, and irrigation engineering.




Conservation Technology


Book Description

The global loss of biodiversity is occurring at an unprecedented pace. Despite the considerable effort devoted to conservation science and management, we still lack even the most basic data on the distribution and density of the majority of plant and animal species, which in turn hampers our efforts to study changes over time. In addition, we often lack behavioural data from the very animals most influenced by environmental changes; this is largely due to the financial and logistical limitations associated with gathering scientific data on species that are cryptic, widely distributed, range over large areas, or negatively influenced by human presence. To overcome these limitations, conservationists are increasingly employing technology to facilitate such data collection. Innovative solutions have been driven by dramatic advances in the conservation-technology interface. The use of camera traps, acoustic sensors, satellite data, drones, and computer algorithms to analyse the large datasets collected are all becoming increasingly widespread. Although specialist books are available on some of these individual technologies, this is the first comprehensive text to describe the breadth of available technology for conservation and to evaluate its varied applications, bringing together a team of international experts using a diverse range of approaches. Conservation Technology is suitable for graduate level students, professional researchers, practitioners and field managers in the fields of ecology and conservation biology.




High Spatial Resolution Remote Sensing


Book Description

High spatial resolution remote sensing is an area of considerable current interest and builds on developments in object-based image analysis, commercial high-resolution satellite sensors, and UAVs. It captures more details through high and very high resolution images (10 to 100 cm/pixel). This unprecedented level of detail offers the potential extraction of a range of multi-resource management information, such as precision farming, invasive and endangered vegetative species delineation, forest gap sizes and distribution, locations of highly valued habitats, or sub-canopy topographic information. Information extracted in high spatial remote sensing data right after a devastating earthquake can help assess the damage to roads and buildings and aid in emergency planning for contact and evacuation. To effectively utilize information contained in high spatial resolution imagery, High Spatial Resolution Remote Sensing: Data, Analysis, and Applications addresses some key questions: What are the challenges of using new sensors and new platforms? What are the cutting-edge methods for fine-level information extraction from high spatial resolution images? How can high spatial resolution data improve the quantification and characterization of physical-environmental or human patterns and processes? The answers are built in three separate parts: (1) data acquisition and preprocessing, (2) algorithms and techniques, and (3) case studies and applications. They discuss the opportunities and challenges of using new sensors and platforms and high spatial resolution remote sensing data and recent developments with a focus on UAVs. This work addresses the issues related to high spatial image processing and introduces cutting-edge methods, summarizes state-of-the-art high spatial resolution applications, and demonstrates how high spatial resolution remote sensing can support the extraction of detailed information needed in different systems. Using various high spatial resolution data, the third part of this book covers a range of unique applications, from grasslands to wetlands, karst areas, and cherry orchard trees.




Hyperspectral Data Processing


Book Description

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.