Unsettled Topics Concerning the Impact of Quantum Technologies on Automotive Cybersecurity


Book Description

Quantum computing is considered the “next big thing” when it comes to solving computational problems impossible to tackle using conventional computers. However, a major concern is that quantum computers could be used to crack current cryptographic schemes designed to withstand traditional cyberattacks. This threat also impacts future automated vehicles as they become embedded in a vehicle-to-everything (V2X) ecosystem. In this scenario, encrypted data is transmitted between a complex network of cloud-based data servers, vehicle-based data servers, and vehicle sensors and controllers. While the vehicle hardware ages, the software enabling V2X interactions will be updated multiple times. It is essential to make the V2X ecosystem quantum-safe through use of “post-quantum cryptography” as well other applicable quantum technologies. This SAE EDGE™ Research Report considers the following three areas to be unsettled questions in the V2X ecosystem: How soon will quantum computing pose a threat to connected and automated vehicle technologies? What steps and measures are needed to make a V2X ecosystem “quantum-safe?” What standardization is needed to ensure that quantum technologies do not pose an unacceptable risk from an automotive cybersecurity perspective? Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020026




Developing the Role of the System Software Integrator to Mitigate Digital Infrastructure Vulnerabilities


Book Description

Traditional physical infrastructure increasingly relies upon software. Yet, 75% of software projects fail in budget by 46% and schedule by 82%. While other systems generally have a “responsible-in-charge” (RIC) professional, the implementation of a similar system of accountability in software is not settled. This is a major concern, as the consequences of software failure can be a matter of life-or-death. Further, there has been a 742% average annual increase in software supply chain attacks on increasingly used open-source software over the past three years, which can cost up to millions of dollars per incident. Developing the Role of the System Software Integrator to Mitigate Digital Infrastructure Vulnerabilities discusses the verification, validation, and uncertainty quantification needed to vet systems before implementation and the continued maintenance measures required over the lifespan of software-integrated assets. It also proposes a certified System Software Integrator role that would be responsible for public safety in traditional infrastructure. Click here to access The Mobility Frontier: Cybersecurity and Trust Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023028




Impact of Quantum Computing in Aerospace


Book Description

As the complexity of systems expands with increasing emphasis for digital transformation, the aerospace industry is generating big data to meet customer requirements. The ability to that data to solve challenging problems is limited by many factors, including the capabilities of current classical computing systems. Impact of Quantum Computing in Aerospace discusses how quantum computing systems offer (possibly quadratic to exponentially) greater computational power over classical computers. The power of quantum computing is tremendous and has many potential impacts on the aerospace industry; however, there are also many unsettled topics surrounding the future of the technology. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022014




Unsettled Topics Concerning Airworthiness Cybersecurity Regulation


Book Description

The certification process of the Boeing 787, starting in 2005, marked a watershed for airworthiness regulation. The “Dreamliner,” the first true “flying data center,” could no longer be certified for airworthiness ignoring “sabotage,” like the classic safety regulation for commercial passenger aircraft. Its extensive application of data networks, including enhanced external digital communication, forced the Federal Aviation Administration (FAA), for the first time, to set “Special Conditions” for cybersecurity. In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. The resulting International Civil Aviation Organization (ICAO) resolutions, US and European Union (EU) legislations, FAA and European Aviation Safety Agency (EASA) regulations, and the DO-326/ED-202 set of standards are already the de-facto, and soon becoming the official, standards for legislation, regulation, and best practices, with the FAA already mandating it to a constantly growing extent for a few years now—and EASA adopting the set in its entirety in July 2020. This emerging superset of documents is now carefully studied by all relevant actors—including industry, regulators, and academia—as the aviation ecosystem moves forward with DO-326/ED-202 set training, gap analysis, and even with certification itself. This report suggests a deeper analysis of these sets of regulatory documents and their effects on the aviation sector as they gradually become the law of the land, starting with their expected effects on the aviation ecosystem, the issues they pose to supply chains, and the challenges they present to the airworthiness certification process itself. Then, this report examines the major DO-326/ED-202 set gaps, inherent dilemmas, and methodological uncertainties. For each such unsettled domain, six aspects are reviewed. Finally, practical solution-seeking processes are proposed, and some specific potential frameworks and solutions are pointed out whenever applicable. It is the intention of this report that these insights and observations would assist regulators, applicants, and standard makers through, at least, the 2020s with accommodating this new regulation and start adjusting it to emerging realities. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the challenges they identify or close any topic to further scrutiny. Click here to access The Mobility Frontier: Cybersecurity on the Air & Ground Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020013




Carbon Farming and Its Impact on Agricultural Technology


Book Description

The agricultural sector is responsible for a large share of anthropogenic greenhouse gases. At the same time, methods such as targeted land use change can reduce emissions from landscape elements and sequester carbon from the atmosphere in the soil. This process, also known as carbon farming, has not been uniformly defined, and faces challenges regarding establishing new requirments for agricultural vehicles and technology, creating profitable business models (that preclude “greenwashing”), and developing governmental frameworks and industry acceptance. Carbon Farming and Its Impact on Agricultural Technology discusses the large development gap for carbon farming methods, especially with regard to agricultural technology. In addition to the new hardware requirements arising from land use change, there is also a need for the further development of software. The establishment of suitable interfaces and solutions that are interoperable with existing technologies is also crucial at this point. This report clearly shows that more funding for research and development is needed today so that appropriate standards can be set and carbon farming can contribute to climate protection in the future. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023026




Emergence of Quantum Computing Technologies in Automotive Applications: Opportunities and Future Use Cases


Book Description

Quantum computing and its applications are emerging rapidly, driving excitement and extensive interest across all industry sectors, from finance to pharmaceuticals. The automotive industry is no different. Quantum computing can bring significant advantages to the way we commute, whether through the development of new materials and catalysts using quantum chemistry or improved route optimization. Quantum computing may be as important as the invention of driverless vehicles. Emergence of Quantum Computing Technologies in Automotive Applications: Opportunities and Future Use Cases attempts to explain quantum technology and its various advantages for the automotive industry. While many of the applications presented are still nascent, they may become mainstream in a decade or so. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024008




Impact of Electric Vehicle Charging on Grid Energy Buffering


Book Description

Variable renewable energy (VRE), such as photovoltaic solar and wind turbines, will require new approaches to buffering energy within the grid. This must include significant ancillary services and longer duration storage to buffer seasonal variations in supply and demand. Such services may be economically provided by leveraging the battery resources of electric vehicles (EVs) for frequency response and energy storage for durations of up to a few hours, together with baseload and dispatchable power for longer duration buffering. Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022022




Unsettled Legal Issues Facing Automated Vehicles


Book Description

This SAE EDGE Research Report explores the many legal issues raised by the advent of automated vehicles. While promised to bring major changes to our lives, there are significant legal challenges that have to be overcome before they can see widespread use. A century’s worth of law and regulation were written with only human drivers in mind, meaning they have to be amended before machines can take the wheel. Everything from key federal safety regulations down to local parking laws will have to shift in the face of AVs. This report undertakes an examination of the AV laws of Nevada, California, Michigan, and Arizona, along with two failed federal AV bills, to better understand how lawmakers have approached the technology. States have traditionally regulated a great deal of what happens on the road, but does that still make sense in a world with AVs? Would the nascent AV industry be able to survive in a world with fifty potential sets of rules? Given the current lack of a federal AV law, state-level legislation can have a great deal of influence over the industry. Beyond government regulation, what other areas of our legal system will have to adapt to AVs? How do we assign liability for an accident in which the only actors were machines? How do you give an AV a ticket? The questions are numerous and have already captured the imagination of lawyers and lawmakers. This report will explore a number of potential changes facing the legal system, the unsettled aspects that derive from this new world, and the proposed solutions that have been raised. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the challenges they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020005




Quantum Computing


Book Description

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.




The Fourth Industrial Revolution


Book Description

World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolu­tion, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wear­able sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manu­facturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individu­als. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frame­works that advance progress.