Unsteady State Processes in Catalysis


Book Description

In the last decades the investigation methods of unsteady state catalytic processes have been widely developed by the response-technique methods. From this research emerged the realization that under unsteady state conditions and, especially under artificially created ones, it is possible to increase the productivity or selectivity of a catalyst or a catalytical process as a whole. The scientific literature in this field is mostly theoretical and aims at structuring and analysing mathematical models of unsteady state catalytical processes. In this book the theoretical and applied aspects of an efficiency of artificially created unsteady conditions in catalysis are discussed. It contains the lectures from researchers from all over the world that were held during the International Conference ''Unsteady State Processes in Catalysis'', 5--8 June 1990, Novosibirsk (USSR). Topics include: -- The problems of dynamics of a catalyst surface -- Kinetic models of unsteady processes -- Dynamics of chemical reactors -- Artificially created unsteady processes in a catalytic reactor.




Catalytic Processes Under Unsteady-State Conditions


Book Description

This book deals with catalytic processes under forced non-steady-state conditions. It demonstrates, both theoretically and practically, that forced non-steady-state processes are highly efficient compared with steady-state processes, and illustrates this with a wealth of practical examples.The first part of the book describes the theoretical and experimental basis of efficient processes, mathematical models of non-steady-state processes in reactors, influence of a non-steady-state catalyst surface, problems of optimization, the theory of a heat front in the fixed catalyst bed, and methods to create efficient cyclic regimes. The second part considers the following processes: sulphur dioxide oxidation in sulphuric acid production, cleaning of effluent gases from toxic impurities, production of high-potency heat, ammonia and methanol synthesis etc.The book will appeal to many readers: chemical engineers (especially in the field of mathematical modelling of reactors with a fixed catalyst bed); personnel of chemical plants and machine-manufacturing companies dealing with maintenance and installation of catalytic reactors; specialists in detoxification of the effluents from organic admixtures and carbon monoxide; students of technical colleges and universities




Reaction Kinetics and the Development of Catalytic Processes


Book Description

The symposium "Reaction Kinetics and the Development of Catalytic Processes" is the continuation of the very successful International Symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis", held in September 1997 in Antwerp, Belgium. These proceedings contain a unique series of top level plenary lectures mainly focused on• the dynamics of catalytic surfaces• the interaction of the reacting molecules with the solid catalyst• the elementary steps of reaction pathways and molecular kinetics.Surface science techniques, molecular modeling, transient kinetic studies, sophisticated and specific reactors are included to a growing extent in the kinetic modeling and the development of catalytic processes. How this is practiced today and how it will evolve in the coming years, and what benefit can be expected for a more fundamentally based approach is the aim of the symposium.




Heterogeneous Catalysis


Book Description

Table of contents




Nonequilibrium Processes in Catalysis


Book Description

Nonequilibrium Processes in Catalysis presents modern ideas and experimental data (e.g., molecular beams, laser technique) on adsorption and catalysis, the mechanism of energy exchange in the processes of particles interaction with a surface, and the lifetimes of excited particles on a surface. Previously unpublished theoretical information regarding the principle of chemoenergetical stimulation accounting for the acceleration of one reaction at the expense of reactant excitation in another is provided, and new ideas about nonequilibrium surface diffusion are explored. Examples of the formation of nonequilibrium dissipative structures in catalysis are presented, including auto-oscillations, auto-waves, multiplicity of kinetic regimes, nonequilibrium phase transition, and decelerated electron exchange between solid and adsorbed species. The book also describes new experimental methods for studying nonequilibrium and quick processes in catalysis. Nonequilibrium Processes in Catalysis will benefit physicists involved with surface science, chemists involved with adsorption and catalysis, engineers, vacuum scientists, physical chemists, materials chemists, students, and others interested in these processes.




Periodic Operation of Chemical Reactors


Book Description

This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. Periodic Operation of Reactors covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, Periodic Operation of Reactors offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. - A comprehensive reference on the fundamentals, development and applications of periodic operation - Contributors and editors include the pioneers of the subject as well as the leading researchers in the field - Covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume - Discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models - Accompanying website with modelling data




Conservation Equations And Modeling Of Chemical And Biochemical Processes


Book Description

Presenting strategies in control policies, this text uses a systems theory approach to predict, simulate and streamline plant operation, conserve fuel and resources, and increase workplace safety in the manufacturing, chemical, petrochemical, petroleum, biochemical and energy industries. Topics of discussion include system theory and chemical/biochemical engineering systems, steady state, unsteady state, and thermodynamic equilibrium, modeling of systems, fundamental laws governing the processes in terms of the state variables, different classifications of physical models, the story of chemical engineering in relation to system theory and mathematical modeling, overall heat balance with single and multiple chemical reactions and single and multiple reactions.




Principles and Practice of Heterogeneous Catalysis


Book Description

This long-awaited second edition of the successful introduction to the fundamentals of heterogeneous catalysis is now completely revised and updated. Written by internationally acclaimed experts, this textbook includes fundamentals of adsorption, characterizing catalysts and their surfaces, the significance of pore structure and surface area, solid-state and surface chemistry, poisoning, promotion, deactivation and selectivity of catalysts, as well as catalytic process engineering. A final section provides a number of examples and case histories. With its color and numerous graphics plus references to help readers to easily find further reading, this is a pivotal work for an understanding of the principles involved.




Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis


Book Description

Many processes of the chemical industry are based upon heterogeneous catalysis. Two important items of these processes are the development of the catalyst itself and the design and optimization of the reactor. Both aspects would benefit from rigorous and accurate kinetic modeling, based upon information on the working catalyst gained from classical steady state experimentation, but also from studies using surface science techniques, from quantum chemical calculations providing more insight into possible reaction pathways and from transient experimentation dealing with reactions and reactors. This information is seldom combined into a kinetic model and into a quantitative description of the process. Generally the catalytic aspects are dealt with by chemists and by physicists, while the chemical engineers are called upon for mechanical aspects of the reactor design and its control. The symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis" aims at illustrating a more global and concerted approach through a number of prestigious keynote lectures and severely screened oral and poster presentations.




Introduction to Non-linear Kinetics in Heterogeneous Catalysis


Book Description

This book comprises seven chapters. The first chapter addresses a phenomenological approach to the concept 'reaction rate', which views the complex reaction as a single unit whose progress if judged from measurements of the formation rates of the reaction participants; it also sets forth the main strategies by which to determine the rates of heterogeneous catalytic reactions. Another approach, a mechanistic one, relying upon the reaction mechanisms considered in the second chapter that has recourse to the Horiuti-Temkin complex reaction kinetics theory and the elementary statement of the graph method application in chemical kinetics. The third, fourth and fifth chapters consistently expound the philosophy of the steady state multiplicity, auto-oscillations, and the reciprocal effect of competitive catalytic reactions. The sixth and seventh chapters concentrate on the kinetics of some pragmatically important heterogeneous and heterogeneous-homogeneous catalytic reactions. Most results, presented in these chapters were obtained in the authors' laboratories.