Uranium and Plant Metabolism


Book Description

This book explores the uranium uptake by plants and its impact on plant physiology and biochemistry. In the first part of this work, the author summarizes the chemistry of uranium, its use and its environmental distribution. Then, particular attention is given to the methods for uranium detection, and to the plant biochemical reactions that influence the uranium uptake. Readers will also discover several strategies adopted by cells to immobilize and handle uranium.







Plant Metabolism


Book Description

Plant Metabolism, Second Edition focuses on the processes, principles, and methodologies involved in the metabolism of higher plants. The book first elaborates on cell structure and function, enzymes, and catabolism. Discussions focus on the control of respiration, conservation of the energy liberated in respiration, chemical pathways of respiration, enzymes in the living cell, prosthetic groups and coenzymes, protein nature of enzymes, general structure of plant cells, and osmotic behavior of cells. The manuscript then tackles anabolism and secondary plant products. Topics include phenylpropanoids, flavonoids, isoprenoid compounds, assimilation of nitrogen and sulfur, synthesis of sucrose and polysaccharides, location of the photosynthetic apparatus, influence of external factors on the rate of photosynthesis, and general nature of photosynthesis. The text takes a look at growth and differentiation, absorption, secretion, and translocation, secondary plant products, and regulation of metabolism. The publication is a valuable source of data for plant science experts and researchers interested in plant metabolism.




Plant Metabolism


Book Description




Uranium in the Environment


Book Description

This book presents the results from the Uranium Mining and Hydrogeology Congress held in September 2005, in Freiberg, Germany. It addresses scientists and engineers involved in the areas of uranium mining and milling sites, clean-up measures, emissions of nuclear power plants and radioactive waste disposal, as well as political decision-makers. The topics covered are: impact on groundwater from radionuclide emission, analytical specification techniques, chemical toxicity, radioisotope plant uptake, microbiology, geochemical and reactive transport, case studies on active and abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies. The accompanying CD-ROM includes all papers in colour.




Health Risks of Radon and Other Internally Deposited Alpha-Emitters


Book Description

This book describes hazards from radon progeny and other alpha-emitters that humans may inhale or ingest from their environment. In their analysis, the authors summarize in one document clinical and epidemiological evidence, the results of animal studies, research on alpha-particle damage at the cellular level, metabolic pathways for internal alpha-emitters, dosimetry and microdosimetry of radionuclides deposited in specific tissues, and the chemical toxicity of some low-specific-activity alpha-emitters. Techniques for estimating the risks to humans posed by radon and other internally deposited alpha-emitters are offered, along with a discussion of formulas, models, methods, and the level of uncertainty inherent in the risk estimates.




Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2016 Report


Book Description

This report assesses the levels and effects of exposure to ionizing radiation. Scientific findings underpin radiation risk evaluation and international protection standards. This report comprises a report with two underpinning scientific annexes. The first annex recapitulates and clarifies the philosophy of science as well as the scientific knowledge for attributing observed health effects in individuals and populations to radiation exposure, and distinguishes between that and inferring risk to individuals and populations from an exposure. The second annex reviews the latest thinking and approaches to quantifying the uncertainties in assessments of risk from radiation exposure, and illustrates these approaches with application to examples that are highly pertinent to radiation protection.




Mitochondria and Anaerobic Energy Metabolism in Eukaryotes


Book Description

Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.




Distribution and Administration of Potassium Iodide in the Event of a Nuclear Incident


Book Description

Radioactive iodines are produced during the operation of nuclear power plants and during the detonation of nuclear weapons. In the event of a radiation incident, radioiodine is one of the contaminants that could be released into the environment. Exposure to radioiodine can lead to radiation injury to the thyroid, including thyroid cancer. Radiation to the thyroid from radioiodine can be limited by taking a nonradioactive iodine (stable iodine) such as potassium iodide. This book assesses strategies for the distribution and administration of potassium iodide (KI) in the event of a nuclear incident. The report says that potassium iodide pills should be available to everyone age 40 or youngerâ€"especially children and pregnant and lactating womenâ€"living near a nuclear power plant. States and municipalities should decide how to stockpile, distribute, and administer potassium iodide tablets, and federal agencies should keep a backup supply of tablets and be prepared to distribute them to affected areas.




Molybdenum-99 for Medical Imaging


Book Description

The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.