Use of Hyperspectral Remote Sensing to Estimate Water Quality


Book Description

Approximating and forecasting water variables like phosphorus, nitrogen, chlorophyll, dissolved organic matter, and turbidity are of supreme importance due to their strong influence on water resource quality. This chapter is aimed at showing the practicability of merging water quality observations from remote sensing with water quality modeling for efficient and effective monitoring of water quality. We examine the spatial dynamics of water quality with hyperspectral remote sensing and present approaches that can be used to estimate water quality using hyperspectral images. The methods presented here have been embraced because the blue-green and green algae peak wavelengths reflectance are close together and make their distinction more challenging. It has also been established that hyperspectral imagers permit an improved recognition of chlorophyll and hereafter algae, due to acquired narrow spectral bands between 450 nm and 600 nm. We start by describing the practical application of hyperspectral remote sensing data in water quality modeling. The surface inherent optical properties of absorption and backscattering of chlorophyll a, colored dissolved organic matter (CDOM), and turbidity are estimated, and a detailed approach on analyzing ARCHER data for water quality estimation is presented.




Water Optics and Water Colour Remote Sensing


Book Description

This book is a printed edition of the Special Issue "Water Optics and Water Colour Remote Sensing" that was published in Remote Sensing




Hyperspectral Remote Sensing


Book Description

Hyperspectral Remote Sensing: Theory and Applications offers the latest information on the techniques, advances and wide-ranging applications of hyperspectral remote sensing, such as forestry, agriculture, water resources, soil and geology, among others. The book also presents hyperspectral data integration with other sources, such as LiDAR, Multi-spectral data, and other remote sensing techniques. Researchers who use this resource will be able to understand and implement the technology and data in their respective fields. As such, it is a valuable reference for researchers and data analysts in remote sensing and Earth Observation fields and those in ecology, agriculture, hydrology and geology. Includes the theory of hyperspectral remote sensing, along with techniques and applications across a variety of disciplines Presents the processing, methods and techniques utilized for hyperspectral remote sensing and in-situ data collection Provides an overview of the state-of-the-art, including algorithms, techniques and case studies




Bio-optical Modeling and Remote Sensing of Inland Waters


Book Description

Bio-optical Modeling and Remote Sensing of Inland Waters presents the latest developments, state-of-the-art, and future perspectives of bio-optical modeling for each optically active component of inland waters, providing a broad range of applications of water quality monitoring using remote sensing. Rather than discussing optical radiometry theories, the authors explore the applications of these theories to inland aquatic environments. The book not only covers applications, but also discusses new possibilities, making the bio-optical theories operational, a concept that is of great interest to both government and private sector organizations. In addition, it addresses not only the physical theory that makes bio-optical modeling possible, but also the implementation and applications of bio-optical modeling in inland waters. Early chapters introduce the concepts of bio-optical modeling and the classification of bio-optical models and satellite capabilities both in existence and in development. Later chapters target specific optically active components (OACs) for inland waters and present the current status and future direction of bio-optical modeling for the OACs. Concluding sections provide an overview of a governance strategy for global monitoring of inland waters based on earth observation and bio-optical modeling. Presents comprehensive chapters that each target a different optically active component of inland waters Contains contributions from respected and active professionals in the field Presents applications of bio-optical modeling theories that are applicable to researchers, professionals, and government agencies




Limnology


Book Description

Limnology is the study of the structural and functional interrelationships of organisms of inland waters as they are affected by their dynamic physical, chemical, and biotic environments. Limnology: Lake and River Ecosystems, Third Edition, is a new edition of this established classic text. The coverage remains rigorous and uncompromising and has been thoroughly reviewed and updated with evolving recent research results and theoretical understanding. In addition, the author has expanded coverage of lakes to reservoir and river ecosystems in comparative functional analyses.







Hyperspectral Remote Sensing


Book Description

Land management issues, such as mapping tree species, recognizing invasive plants, and identifying key geologic features, require an understanding of complex technical issues before the best decisions can be made. Hyperspectral remote sensing is one the technologies that can help with reliable detection and identification. Presenting the fundamenta




Hyperspectral Remote Sensing of Nearshore Water Quality


Book Description

This book provides details on of the utility of hyperspectral remote sensing – NASA/AVIRIS in nearshore water quality issues of NY/NJ. It demonstrates the use of bio optical modeling and retrieval techniques to derive the concentrations of important water quality parameters (chlorophyll, color dissolved organic matter and suspended sediments) in the study area. The case study focuses on the nearshore waters of NY/NJ considered as a valued ecological, economic and recreational resource within the New York metropolitan area. During field campaigns (1998-2001) measurements were made to establish hydrological optical properties of the NY/NJ nearshore waters with concurrent NASA/AVIRIS overflights. The field measurements included: 1) concurrent above and below surface spectral reflectance; 2) shipboard sampling for determination of inherent optical properties (IOP); and 3) concentrations of optically important water quality parameters. Understanding the relationship between reflectance, absorption and scattering is essential for developing the analytical algorithm necessary to use remote sensing as a monitoring /management tool in the nearshore environment.




Knowledge-Oriented Applications in Data Mining


Book Description

The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by 'Data Mining' address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.