Use of Representations in Reasoning and Problem Solving


Book Description

Within an increasingly multimedia focused society, the use of external representations in learning, teaching and communication has increased dramatically. This book explores: how we can theorise the relationship between processing internal and external representations.




Use of Representations in Reasoning and Problem Solving


Book Description

Within an increasingly multimedia focused society, the use of external representations in learning, teaching and communication has increased dramatically. Whether in the classroom, university or workplace, there is a growing requirement to use and interpret a large variety of external representational forms and tools for knowledge acquisition, problem solving, and to communicate with others. Use of Representations in Reasoning and Problem Solving brings together contributions from some of the world’s leading researchers in educational and instructional psychology, instructional design, and mathematics and science education to document the role which external representations play in our understanding, learning and communication. Traditional research has focused on the distinction between verbal and non-verbal representations, and the way they are processed, encoded and stored by different cognitive systems. The contributions here challenge these research findings and address the ambiguity about how these two cognitive systems interact, arguing that the classical distinction between textual and pictorial representations has become less prominent. The contributions in this book explore: how we can theorise the relationship between processing internal and external representations what perceptual and cognitive restraints can affect the use of external representations how individual differences affect the use of external representations how we can combine external representations to maximise their impact how we can adapt representational tools for individual differences. Using empirical research findings to take a fresh look at the processes which take place when learning via external representations, this book is essential reading for all those undertaking postgraduate study and research in the fields of educational and instructional psychology, instructional design and mathematics and science education.




Discipline-Based Education Research


Book Description

The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding. Discipline-Based Education Research is based on a 30-month study built on two workshops held in 2008 to explore evidence on promising practices in undergraduate science, technology, engineering, and mathematics (STEM) education. This book asks questions that are essential to advancing DBER and broadening its impact on undergraduate science teaching and learning. The book provides empirical research on undergraduate teaching and learning in the sciences, explores the extent to which this research currently influences undergraduate instruction, and identifies the intellectual and material resources required to further develop DBER. Discipline-Based Education Research provides guidance for future DBER research. In addition, the findings and recommendations of this report may invite, if not assist, post-secondary institutions to increase interest and research activity in DBER and improve its quality and usefulness across all natural science disciples, as well as guide instruction and assessment across natural science courses to improve student learning. The book brings greater focus to issues of student attrition in the natural sciences that are related to the quality of instruction. Discipline-Based Education Research will be of interest to educators, policy makers, researchers, scholars, decision makers in universities, government agencies, curriculum developers, research sponsors, and education advocacy groups.




Empowering Mathematics Learners: Yearbook 2017, Association Of Mathematics Educators


Book Description

This book contributes towards the literature in the field of mathematics education, specifically on aspects of empowering learners of mathematics. The book, comprising eighteen chapters, written by renowned researchers in mathematics education, provides readers with approaches and applicable classroom strategies to empower learners of mathematics.The chapters in the book can be classified into four sections. The four sections focus on how learners could be empowered in their learning, cognitive and affective processes, through mathematical content, purposefully designed mathematical tasks, whilst developing 21st century competencies.




Thinking and Problem Solving


Book Description




Cognitive Foundations for Improving Mathematical Learning


Book Description

The fifth volume in the Mathematical Cognition and Learning series focuses on informal learning environments and other parental influences on numerical cognitive development and formal instructional interventions for improving mathematics learning and performance. The chapters cover the use of numerical play and games for improving foundational number knowledge as well as school math performance, the link between early math abilities and the approximate number system, and how families can help improve the early development of math skills. The book goes on to examine learning trajectories in early mathematics, the role of mathematical language in acquiring numeracy skills, evidence-based assessments of early math skills, approaches for intensifying early mathematics interventions, the use of analogies in mathematics instruction, schema-based diagrams for teaching ratios and proportions, the role of cognitive processes in treating mathematical learning difficulties, and addresses issues associated with intervention fadeout. Identifies the relative influence of school and family on math learning Discusses the efficacy of numerical play for improvement in math Features learning trajectories in math Examines the role of math language in numeracy skills Includes assessments of math skills Explores the role of cognition in treating math-based learning difficulties




Multiple Representations in Physics Education


Book Description

This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementation of representations should consider design principles for using multiple representations. Investigations regarding their effect on classroom communication as well as on the learning results in all levels of schooling and for different topics of physics are reported. The book is intended for physics educators and their students at universities and for physics teachers in schools to apply multiple representations in physics in a productive way.




Handbook of Learning from Multiple Representations and Perspectives


Book Description

In and out of formal schooling, online and off, today’s learners must consume and integrate a level of information that is exponentially larger and delivered through a wider range of formats and viewpoints than ever before. The Handbook of Learning from Multiple Representations and Perspectives provides a path for understanding the cognitive, motivational, and socioemotional processes and skills necessary for learners across educational contexts to make sense of and use information sourced from varying inputs. Uniting research and theory from education, psychology, literacy, library sciences, media and technology, and more, this forward-thinking volume explores the common concerns, shared challenges, and thematic patterns in our capacity to make meaning in an information-rich society. Chapter 16 of this book is freely available as a downloadable Open Access PDF under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license available at http://www.taylorfrancis.com/books/e/9780429443961.




Routines for Reasoning


Book Description

Routines can keep your classroom running smoothly. Now imagine having a set of routines focused not on classroom management, but on helping students develop their mathematical thinking skills. Routines for Reasoning provides expert guidance for weaving the Standards for Mathematical Practice into your teaching by harnessing the power of classroom-tested instructional routines. Grace Kelemanik, Amy Lucenta, and Susan Janssen Creighton have applied their extensive experience teaching mathematics and supporting teachers to crafting routines that are practical teaching and learning tools. -- Provided by publisher.




Calculus Students' Representation Use in Group-Work and Individual Settings


Book Description

The study of student representation use and specifically the distinction between analytic and visual representations has fueled a long line of mathematics education literature that began more than 35 years ago. This literature can be partitioned into two bodies of work, one that is primarily cognitive and one that is primarily social. In spite of the large overlap in the results and foci of these two bodies of work they have tended to not inform one another. I bridge these two bodies of work by creating and implementing an analysis tool, referred to as the VAP-model, which can be used within both group-work and individual interview settings. This model allows focusing on how students in both settings transition between representations during problem-solving and how these transitions fuel students' mathematical advancement. The VAP-model considers physical representations in addition to the analytic/visual distinction, which has driven much of the research on representation use. Physical representations are references to realistic or imaginable scenarios in mathematical problem-solving. Fluency with multiple representations has been long considered an important aspect of deep understanding of mathematics in general and calculus in particular. This study examines the representation use of three calculus students from a technologically enriched calculus course in both in-class group-work settings and individual interview settings. This analysis reveals that students incorporate representations not required by given tasks and that, in spite of their common classroom experiences, the representations used in problem-solving vary widely across students. Comparing representation usage in the two settings showed similarities in how frequently each participant transitioned between modes of representation, which modes appeared within their reasoning and the types of questions in which particular shifts between representations occurred. This analysis also highlighted cross-setting similarities in how social roles facilitated shifts in representation use and in what ways these transitions occurred. Within both settings physical representations played an important role in students' thinking and were often introduced to reason about non-physical problems. Since in past studies this type of representation use was commonly subsumed under other categories this phenomenon was often overlooked.