ACI Manual of Concrete Inspection


Book Description

This manual is intended to guide, assist, and instruct concrete inspectors and others engaged in concrete construction and testing, including field engineers, construction superintendents, supervisors, laboratory and field technicians, and workers. Designers may also find the manual to be a valuable reference by using the information to better adapt their designs to the realities of field construction. Because of the diverse possible uses of the manual and the varied backgrounds of the readers, it includes the reasoning behind the technical instructions. The field of concrete construction has expanded dramatically over the years to reflect the many advances that have taken place in the concrete industry. Although many of the fundamentals presented in previous editions of this manual remain relevant and technically correct, this eleventh edition incorporates new material to address these advances in technology




Improving Concrete Quality


Book Description

Improve the Quality of Concrete, Improve the Quality of ConstructionQuality measurement is not prevalent in the concrete industry and quality investment is not seen as potentially generating a positive return. Improving Concrete Quality examines how and why concrete quality should be measured, and includes instruction on developing specifications w




Concrete Construction


Book Description

This book is a thorough and comprehensive update of the 2002 edition, that incorporates detailed references to the Canadian, American, and British (European) standards, contextualized by the author based on over 30 years of construction experience. In addition to updates to the core text, many new topics are presented in the second edition, including a chapter discussing the methods for achieving quality control and ensuring quality assurance in concrete construction. The book consists of two parts. The first part provides basic information about normal concrete, its grades used on sites and various kinds of modified concretes such as fiber- reinforced concrete, sulphur concrete, roller compacted concrete, high performance concrete, ultra- high performance concrete, and flowing concrete. . It further addresses physical properties of concrete and various types of Portland cement, blended cements, admixtures, additives including properties of aggregates and their influence. The second part of the book highlights the principal causes of concrete deterioration along with protective measures, resulting from incorrect selection of constituent materials, poor construction methods, external factors, chemical attack, corrosion problems, hot and cold weather effects, and the various errors in designing and detailing. Featuring an extensive bibliography of the highly adopted standards as well as manuals and journals critical to the construction industry at the end of each chapter, the volume offers readers an advanced understanding of the theory and practical application of concrete technology and international standards in North America and Britain. Addresses concrete technology as well as concrete construction practices, meeting national and international standards; Maximizes readers' understanding of the principal causes of concrete deterioration along with protective measures; Facilitates readers' grasp of different nomenclature used for the same materials in different parts of the world; Features suitable tables, charts, and diagrams that illustrate and organize useful information; Explains sustainable concrete doctrine and how to achieve it meeting green concrete / building requirements; Provides a glossary, conversion factors, and examples of concrete mix design. ยท




ASTM Standardization News


Book Description




High-Strength Concrete


Book Description

This practical book from a highly experienced author presents clearly the means and methods for designing, producing and using high-strength concrete. High-strength concrete offers many benefits. Higher compressive strengths allow for a reduction in the cross-sectional dimensions of columns and walls in buildings. Its greater stiffness allows for increasing building heights while controlling sway and occupant comfort. Civil structures such as bridges have benefited from greater span lengths, shallower beam sections, wider girder spacing, and extended service life. Illustrated with real life examples, through documented case histories, High-Strength Concrete will be a valuable resource for contractors, producers, inspection agencies, as well as engineers and researchers.