Users & Machine Learning-based Curation Systems


Book Description

Users are increasingly interacting with machine learning (ML)-based curation systems. YouTube and Facebook, two of the most visited websites worldwide, utilize such systems to curate content for billions of users. Contemporary challenges such as fake news, filter bubbles, and biased predictions make the understanding of ML-based curation systems an important and timely concern. Despite their political, social, and cultural importance, practitioners' framing of machine learning and users' understanding of ML-based curation systems have not been investigated systematically. This is problematic since machine learning - as a novel programming paradigm in which a mapping between input and output is inferred from data - poses a variety of open research questions regarding users' understanding. The first part of this thesis provides the first in-depth investigation of ML-based curation systems as socio-technical systems. The second part of the thesis contributes recommendations on how ML-based curation systems can and should be explained and audited. The first part analyses practitioners' framing of ML by examining how the term machine learning, ML applications, and ML algorithms are framed in tutorials. The thesis also investigates the beliefs that users have about YouTube and introduces a user belief framework of ML-based curation systems. Furthermore, it demonstrates how limited users' capabilities for providing input data for ML-based curation systems are. The second part evaluates different explanations of ML-based systems. This evaluation uncovered an explanatory gap between what is available to explain ML-based curation systems and what users need to understand such systems. Informed by this explanatory gap, the second part of this thesis demonstrates that audits of ML systems can be an important alternative to explanations. This demonstration of audits also uncovers a popularity bias enacted by YouTube's ML-based curation system. Based on these findings, the thesis recommends performing audits to ensure that ML-based systems act in the public's interest. Keywords: Algorithmic Bias; Algorithmic Experience; Algorithmic Transparency; Algorithms; Fake News; Human-Centered Machine Learning; Human-Computer Interaction; Machine Learning; Artificial Intelligence; Recommender Systems; Social Media; Trust; User Beliefs; User Experience; Video Recommendations; YouTube




Users & Machine Learning-based Curation Systems


Book Description

Algorithmic Bias; Algorithmic Experience; Algorithmic Transparency; Algorithms; Fake News; Human-Centered Machine Learning; Human-Computer Interaction; Machine Learning; Artificial Intelligence; Recommender Systems; Social Media; Trust; User Beliefs; User Experience; Video Recommendations; YouTube.




Disinformation in Open Online Media


Book Description

This book constitutes the refereed proceedings of the Third Multidisciplinary International Symposium on Disinformation in Open Online Media, MISDOOM 2021, held in September 2021. The conference was held virtually due to the COVID-19 pandemic. The 9 full papers were carefully reviewed and selected from 27 submissions. The papers focus on health misinformation, hate speech, misinformation diffusion, news spreading behaviour and mitigation, harm-aware news recommender systems.




Disinformation in Open Online Media


Book Description

Chapters “Identifying Political Sentiments on YouTube: A Systematic Comparison regarding the Accuracy of Recurrent Neural Network and Machine Learning Models”, “Do Online Trolling Strategies Differ in Political and Interest Forums: Early Results” and “Students Assessing Digital News and Misinformation” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Big Data


Book Description

Uncover the secrets of Big Data with our comprehensive book bundle: "Big Data: Statistics, Data Mining, Analytics, and Pattern Learning." Dive into the world of data analytics and processing with Book 1, where you'll gain a solid understanding of the fundamentals necessary to navigate the vast landscape of big data. In Book 2, explore data mining techniques that allow you to extract valuable insights and patterns from large datasets. From marketing to finance and beyond, discover how to uncover hidden trends that drive informed decision-making. Ready to take your skills to the next level? Book 3 delves into advanced data science, where you'll learn to harness the power of machine learning for big data analysis. From regression analysis to neural networks, master the tools and techniques that drive predictive modeling and pattern recognition. Finally, in Book 4, learn how to design robust big data architectures that can scale to meet the needs of modern enterprises. Explore architectural patterns, scalability techniques, and fault tolerance mechanisms that ensure your systems are resilient and reliable. Whether you're a beginner looking to build a solid foundation or an experienced professional seeking to deepen your expertise, this book bundle has something for everyone. Don't miss out on this opportunity to unlock the potential of Big Data and drive innovation in your organization. Order now and embark on your journey to becoming a Big Data expert!




Handbook of Natural Language Processing


Book Description

The Handbook of Natural Language Processing, Second Edition presents practical tools and techniques for implementing natural language processing in computer systems. Along with removing outdated material, this edition updates every chapter and expands the content to include emerging areas, such as sentiment analysis.New to the Second EditionGreater




Web Information Systems Engineering – WISE 2022


Book Description

This book constitutes the proceedings of the 23nd International Conference on Web Information Systems Engineering, WISE 2021, held in Biarritz, France, in November 2022. The 31 full, 13 short and 3 demo papers were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: Social Media, Spatial & Temporal Issues, Query Processing & Information Extraction, Architecture and Performance, Graph Data Management, Security & Privacy, Information Retrieval & Text Processing, Reinforcement Learning, Learning & Optimization, Spatial Data Processing, Recommendation, Neural Networks, and Demo Papers.




User Modeling, Adaption, and Personalization


Book Description

This book constitutes the thoroughly refereed proceedings of the 21st International Conference on User Modeling, Adaption, and Personalization, held in Rome, Italy, in June 2013. The 21 long and 7 short papers of the research paper track were carefully reviewed and selected from numerous submissions. The papers cover the following topics: recommender systems, student modeling, social media and teams, human cognition, personality, privacy, web curation and user profiles, travel and mobile applications, and systems for elderly and disabled individuals.




Knowledge and Systems Engineering


Book Description

This volume contains papers presented at the Sixth International Conference on Knowledge and Systems Engineering (KSE 2014), which was held in Hanoi, Vietnam, during 9–11 October, 2014. The conference was organized by the University of Engineering and Technology, Vietnam National University, Hanoi. Besides the main track of contributed papers, this proceedings feature the results of four special sessions focusing on specific topics of interest and three invited keynote speeches. The book gathers a total of 51 carefully reviewed papers describing recent advances and development on various topics including knowledge discovery and data mining, natural language processing, expert systems, intelligent decision making, computational biology, computational modeling, optimization algorithms, and industrial applications.




Systems Engineering and Artificial Intelligence


Book Description

This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams—where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy. The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.