An Introduction to Statistical Learning


Book Description

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.




Understanding Statistics Using R


Book Description

This book was written to provide resource materials for teachers to use in their introductory or intermediate statistics class. The chapter content is ordered along the lines of many popular statistics books so it should be easy to supplement the content and exercises with class lecture materials. The book contains R script programs to demonstrate important topics and concepts covered in a statistics course, including probability, random sampling, population distribution types, role of the Central Limit Theorem, creation of sampling distributions for statistics, and more. The chapters contain T/F quizzes to test basic knowledge of the topics covered. In addition, the book chapters contain numerous exercises with answers or solutions to the exercises provided. The chapter exercises reinforce an understanding of the statistical concepts presented in the chapters. An instructor can select any of the supplemental materials to enhance lectures and/or provide additional coverage of concepts and topics in their statistics book.




Statistics


Book Description

Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http://www.imperial.ac.uk/bio/research/crawley/statistics Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.




Learning Statistics Using R


Book Description

Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.




The Art of Data Analysis


Book Description

A friendly and accessible approach to applying statistics in the real world With an emphasis on critical thinking, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics presents fun and unique examples, guides readers through the entire data collection and analysis process, and introduces basic statistical concepts along the way. Leaving proofs and complicated mathematics behind, the author portrays the more engaging side of statistics and emphasizes its role as a problem-solving tool. In addition, light-hearted case studies illustrate the application of statistics to real data analyses, highlighting the strengths and weaknesses of commonly used techniques. Written for the growing academic and industrial population that uses statistics in everyday life, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics highlights important issues that often arise when collecting and sifting through data. Featured concepts include: • Descriptive statistics • Analysis of variance • Probability and sample distributions • Confidence intervals • Hypothesis tests • Regression • Statistical correlation • Data collection • Statistical analysis with graphs Fun and inviting from beginning to end, The Art of Data Analysis is an ideal book for students as well as managers and researchers in industry, medicine, or government who face statistical questions and are in need of an intuitive understanding of basic statistical reasoning.




Choosing and Using Statistics


Book Description

Choosing and Using Statistics remains an invaluable guide for students using a computer package to analyse data from research projects and practical class work. The text takes a pragmatic approach to statistics with a strong focus on what is actually needed. There are chapters giving useful advice on the basics of statistics and guidance on the presentation of data. The book is built around a key to selecting the correct statistical test and then gives clear guidance on how to carry out the test and interpret the output from four commonly used computer packages: SPSS, Minitab, Excel, and (new to this edition) the free program, R. Only the basics of formal statistics are described and the emphasis is on jargon-free English but any unfamiliar words can be looked up in the extensive glossary. This new 3rd edition of Choosing and Using Statistics is a must for all students who use a computer package to apply statistics in practical and project work. Features new to this edition: Now features information on using the popular free program, R Uses a simple key and flow chart to help you choose the right statistical test Aimed at students using statistics for projects and in practical classes Includes an extensive glossary and key to symbols to explain any statistical jargon No previous knowledge of statistics is assumed




Discovering Statistics Using R


Book Description

Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field′s books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you′re doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book′s accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.




How to Lie with Statistics


Book Description

If you want to outsmart a crook, learn his tricks—Darrell Huff explains exactly how in the classic How to Lie with Statistics. From distorted graphs and biased samples to misleading averages, there are countless statistical dodges that lend cover to anyone with an ax to grind or a product to sell. With abundant examples and illustrations, Darrell Huff’s lively and engaging primer clarifies the basic principles of statistics and explains how they’re used to present information in honest and not-so-honest ways. Now even more indispensable in our data-driven world than it was when first published, How to Lie with Statistics is the book that generations of readers have relied on to keep from being fooled.




Using and Interpreting Statistics


Book Description

Eric Corty’s engaging textbook is exceptionally well suited for behavioral science students studying statistical practice in their field for the first time. An award-winning master teacher, Corty speaks to students in their language, with an approachable voice that conveys the basics of collecting and understanding statistical data step by step. Examples come from the behavioral and social sciences, as well as from recognizable aspects of everyday life to help students see the relevance of what they are studying.




Teaching Statistics Using Baseball


Book Description

Teaching Statistics Using Baseball is a collection of case studies and exercises applying statistical and probabilistic thinking to the game of baseball. Baseball is the most statistical of all sports since players are identified and evaluated by their corresponding hitting and pitching statistics. There is an active effort by people in the baseball community to learn more about baseball performance and strategy by the use of statistics. This book illustrates basic methods of data analysis and probability models by means of baseball statistics collected on players and teams. Students often have difficulty learning statistics ideas since they are explained using examples that are foreign to the students. The idea of the book is to describe statistical thinking in a context (that is, baseball) that will be familiar and interesting to students. The book is organized using a same structure as most introductory statistics texts. There are chapters on the analysis on a single batch of data, followed with chapters on comparing batches of data and relationships. There are chapters on probability models and on statistical inference. The book can be used as the framework for a one-semester introductory statistics class focused on baseball or sports. This type of class has been taught at Bowling Green State University. It may be very suitable for a statistics class for students with sports-related majors, such as sports management or sports medicine. Alternately, the book can be used as a resource for instructors who wish to infuse their present course in probability or statistics with applications from baseball. The second edition of Teaching Statistics follows the same structure as the first edition, where the case studies and exercises have been replaced by modern players and teams, and the new types of baseball data from the PitchFX system and fangraphs.com are incorporated into the text.