Using Uncertainty to Guide Characterization, Closure and Long-term Management of an Underground Nuclear Test Site


Book Description

No feasible remediation technology has been identified for nuclear test cavities such that site management and institutional controls must be relied on to minimize the possibility of public exposure to these legacies of the Cold War. The most common exposure pathway of concern is migration of radionuclides with groundwater. Prediction of flow and transport behavior in the sparsely observed subsurface environment is inherently uncertain, but developing effective management strategies demands such predictions. An agreement between the U.S. Department of Energy (DOE) and the State of Nevada provides a framework for addressing uncertainty in site management decisions. The central element of the framework is calculation of a predictive contaminant boundary at a specified confidence interval. This boundary is defined as a three-dimensional region encompassing all groundwater that contains radionuclides at concentrations higher than Safe Drinking Water Act limits at any time through a 1,000-year period, at a 95-percent confidence interval. In the process of predicting this boundary at the Shoal underground nuclear test site in rural Nevada, some interesting challenges were encountered. A stochastic groundwater flow and transport model was developed for the site using historic site data and information from four characterization wells drilled in 1996. Though the predicted mean transport plume was located within the existing site land boundary, uncertainty in the predictions was very large such that the 95-percent confidence interval extended beyond the site boundary. This level of uncertainty was unacceptable to DOE, prompting additional site characterization with the goal of reducing the uncertainty in contaminant migration predictions. The numerical groundwater flow model was used to identify the optimum data collection activities for uncertainty reduction. This Data Decision Analysis guided drilling and testing of additional wells. Significant revision occurred to the groundwater model as a result of the new data. The revised model was deemed acceptable by both DOE and the State of Nevada, and has been used to determine the contaminant boundary for the site, the calculation of which required choices regarding risk or concentration metrics and whether to focus on the uncertainty of where the contaminants might be or where the groundwater is free of contaminants. The model was also used to develop an optimum monitoring system, the installation of which provided another opportunity to reduce uncertainty as data were collected for model validation. The short-term validation process, and long-term monitoring, provide data that can feed back into the stochastic flow and transport model to cull poorly performing model realizations and reduce uncertainty in the model predictions.




Evaluation of Quantification of Margins and Uncertainties Methodology for Assessing and Certifying the Reliability of the Nuclear Stockpile


Book Description

Maintaining the capabilities of the nuclear weapons stockpile and performing the annual assessment for the stockpile's certification involves a wide range of processes, technologies, and expertise. An important and valuable framework helping to link those components is the quantification of margins and uncertainties (QMU) methodology. In this book, the National Research Council evaluates: how the national security labs were using QMU, including any significant differences among the three labs its use in the annual assessment whether the applications of QMU to assess the proposed reliable replacement warhead (RRW) could reduce the likelihood of resuming underground nuclear testing This book presents an assessment of each of these issues and includes findings and recommendations to help guide laboratory and NNSA implementation and development of the QMU framework. It also serves as a guide for congressional oversight of those activities.













Regulatory Guide


Book Description

Contents: 1. Power reactors.--2. Research and test reactors.--3. Fuels and materials facilities.--4. Environmental and siting.--5. Materials and plant protection.--6. Products.--7. Transportation.--8. Occupational health.--9. Antitrust reviews.--10. General.




Shaft Engineering


Book Description

Papers presented at the Shaft Engineering conference, organized by the Institution of Mining and Metallurgy in association with the Institution of Civil Engineers and the Institution of Mining Engineers, and held in Harrogate, England, from 5 to 7 June, 1989.




Near Surface Disposal Facilities for Radioactive Waste


Book Description

This Safety Guide provides recommendations on how to meet safety requirements on the disposal of radioactive waste. It is concerned with the disposal of solid radioactive waste by emplacement in designated facilities at or near the land surface. The Safety Guide provides guidance on the development, operation and closure of, and on the regulatory control of, near surface disposal facilities, which are suitable for the disposal of very low level waste and low level waste. The Safety Guide provides guidance on a range of disposal methods, including the emplacement of solid radioactive waste in earthen trenches, in above ground engineered structures, in engineered structures just below the ground surface and in rock caverns, silos and tunnels excavated at depths of up to a few tens of metres underground. It is intended for use primarily by those involved with policy development for, with the regulatory control of, and with the development and operation of near surface disposal facilities.




Uncertainty Analysis of Nondestructive Assay Measurements of Nuclear Waste


Book Description

Regulatory agencies governing the disposal of nuclear waste require that the waste be appropriately characterized prior to disposition. The most important aspect of the characterization process, establishing radionuclide content, is often achieved by nondestructive assay (NDA). For NDA systems to be approved for use in these applications, measurement uncertainty must be established. Standard propagation of errors methods provide a good starting point for considering the uncertainty analysis of NDA systems for nuclear waste. However, as compared with other applications (e.g., nuclear material accountability), using NDA systems for nuclear waste measurements presents some unique challenges. These challenges, stemming primarily from the diverse nature of the waste materials encountered, carry over into the uncertainty analysis as well. This paper reviews performance measures appropriate for the assessment of NDA uncertainty, describes characteristics of nuclear waste measurements that contribute to difficulties in assessing uncertainty, and outlines some statistics based methods for incorporating variability in waste characteristics in an uncertainty analysis.