Small and Micro Combined Heat and Power (CHP) Systems


Book Description

Small and micro combined heat and power (CHP) systems are a form of cogeneration technology suitable for domestic and community buildings, commercial establishments and industrial facilities, as well as local heat networks. One of the benefits of using cogeneration plant is a vastly improved energy efficiency: in some cases achieving up to 80–90% systems efficiency, whereas small-scale electricity production is typically at well below 40% efficiency, using the same amount of fuel. This higher efficiency affords users greater energy security and increased long-term sustainability of energy resources, while lower overall emissions levels also contribute to an improved environmental performance.Small and micro combined heat and power (CHP) systems provides a systematic and comprehensive review of the technological and practical developments of small and micro CHP systems.Part one opens with reviews of small and micro CHP systems and their techno-economic and performance assessment, as well as their integration into distributed energy systems and their increasing utilisation of biomass fuels. Part two focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines, gas turbines and microturbines, Stirling engines, organic Rankine cycle process and fuel cell systems. Heat-activated cooling (i.e. trigeneration) technologies and energy storage systems, of importance to the regional/seasonal viability of this technology round out this section. Finally, part three covers the range of applications of small and micro CHP systems, from residential buildings and district heating, to commercial buildings and industrial applications, as well as reviewing the market deployment of this important technology.With its distinguished editor and international team of expert contributors, Small and micro combined heat and power (CHP) systems is an essential reference work for anyone involved or interested in the design, development, installation and optimisation of small and micro CHP systems. - Reviews small- and micro-CHP systems and their techno-economic and performance assessment - Explores integration into distributed energy systems and their increasing utilisation of biomass fuels - Focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines




Smart Grid (R)Evolution


Book Description

This book explores smart grid from a social perspective, for advanced students, academic researchers, and energy professionals.




Guide to Purchasing Green Power


Book Description

"This guide can be downloaded from: www.eere.energy.gov/femp/technologies/renewable%5Fpurchasepower.cfm, www.epa.gov/greenpower/buygreenpower.htm, www.thegreenpowergroup.org/publications.html, www.resource-solutions.org."--Verso. t.p.




Power Generation Technologies


Book Description

This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system




European Law on Combined Heat and Power


Book Description

This book provides an analysis of the European policy approach to combined heat and power (CHP), a highly efficient technology used by all EU Member States for the needs of generating electricity and heat. European Law on Combined Heat and Power carries out an assessment of the European legal and policy measures on CHP, evaluating how it has changed over the years through progress and decline in specific member states. Over the course of the book, Sokołowski explores all aspects of CHP, examining the types of measures used to steer the growth of cogeneration in the EU and the policies and regulatory tools that have influenced its development. He also assesses the specific role of CHP in the liberalisation of the internal energy market and EU action on climate and sustainability. Finally, by delivering his notions of "cogenatives", "cogenmunities", or "Micro-Collective-Flexible-Smart-High-Efficiency cogeneration", Sokołowski considers how the new EU energy package – "Clean energy for all Europeans" – will shape future developments. This book will be of great interest to students and scholars of energy law and regulation, combined heat and power and energy efficiency, as well as policy makers and energy experts working in the CHP sector.




Organic Rankine Cycle (ORC) Power Systems


Book Description

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. - Provides a thorough introduction to ORC power systems - Contains detailed chapters on ORC plant components - Includes a section focusing on ORC design and optimization - Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes - Various chapters are authored by well-known specialists from Academia and ORC manufacturers




Enhancing the Resilience of the Nation's Electricity System


Book Description

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.




Biomass Combustion Science, Technology and Engineering


Book Description

The utilisation of biomass is increasingly important for low- or zero-carbon power generation. Developments in conventional power plant fuel flexibility allow for both direct biomass combustion and co-firing with fossil fuels, while the integration of advanced technologies facilitates conversion of a wide range of biomass feedstocks into more readily combustible fuel. Biomass combustion science, technology and engineering reviews the science and technology of biomass combustion, conversion and utilisation.Part one provides an introduction to biomass supply chains and feedstocks, and outlines the principles of biomass combustion for power generation. Chapters also describe the categorisation and preparation of biomass feedstocks for combustion and gasification. Part two goes on to explore biomass combustion and co-firing, including direct combustion of biomass, biomass co-firing and gasification, fast pyrolysis of biomass for the production of liquids and intermediate pyrolysis technologies. Largescale biomass combustion and biorefineries are then the focus of part three. Following an overview of large-scale biomass combustion plants, key engineering issues and plant operation are discussed, before the book concludes with a chapter looking at the role of biorefineries in increasing the value of the end-products of biomass conversion.With its distinguished editor and international team of expert contributors, Biomass combustion science, technology and engineering provides a clear overview of this important area for all power plant operators, industrial engineers, biomass researchers, process chemists and academics working in this field. - Reviews the science and technology of biomass combustion, conversion and utilisation - Provides an introduction to biomass supply chains and feedstocks and outlines the principles of biomass combustion for power generation - Describes the categorisation and preparation of biomass feedstocks for combustion and gasification




Sustainable On-Site CHP Systems: Design, Construction, and Operations


Book Description

PROVEN TECHNIQUES FOR REDUCING ENERGY USE WITH CHP SYSTEMS Plan, design, construct, and operate a sustainable on-site CHP (combined heat and power) facility using the detailed information in this practical guide. Sustainable On-Site CHP Systems reveals how to substantially increase the energy efficiency in commercial, industrial, institutional, and residential buildings using waste heat and thermal energy from power generation equipment for cooling, heating, and humidity control. In-depth case studies illustrate real-world applications of CHP systems. Coverage includes: CHP basics, power equipment, and thermal design Packaged CHP systems Regulatory issues Carbon footprint, environmental benefits, and emission controls Conducting a feasibility study and economic analysis CHP plant design and engineering Construction, permits, and risk management Operation and maintenance Performance monitoring and improvement




Hydrogen Fuel Cell Technology for Stationary Applications


Book Description

Unconventional energy sources have gained and will continue to gain an increasing share of energy systems around the world. Today, hydrogen is recognized as a non-polluting energy carrier because it does not contribute to global warming if it is produced from renewable sources. Hydrogen is already part of today's chemical industry, but as an energy source, its rare advantages can only be obtained with the help of technologies. Currently, the fuel cell is considered the cleanest sustainable energy. With the development of fuel cells, hydrogen-based energy generation becomes a reality. Hydrogen Fuel Cell Technology for Stationary Applications is an essential publication that focuses on the advantages of hydrogen as a primary energy center and addresses its use in the sustainable future of stationary applications. While highlighting a broad range of topics including cost expectations, production methods, and social impact, this publication explores all aspects of the implementation and dissemination of fuel cell technology in the hope of establishing a sustainable marketplace for it. This book is ideally designed for fuel cell manufacturers, architects, electrical engineers, civil engineers, environmental engineers, advocates, manufacturers, mechanics, researchers, academicians, and students.