Synchrotron Radiation Research


Book Description

This book has grown out of our shared experience in the development of the Stanford Synchrotron Radiation Laboratory (SSRL), based on the electron-positron storage ring SPEAR at the Stanford Linear Accelerator Center (SLAC) starting in Summer, 1973. The immense potential of the photon beam from SPEAR became obvious as soon as experiments using the beam started to run in May, 1974. The rapid growth of interest in using the beam since that time and the growth of other facilities using high-energy storage rings (see Chapters 1 and 3) demonstrates how the users of this source of radiation are finding applications in an increasingly wide variety of fields of science and technology. In assembling the list of authors for this book, we have tried to cover as many of the applications of synchrotron radiation, both realized already or in the process of realization, as we can. Inevitably, there are omissions both through lack of space and because many projects are at an early stage. We thank the authors for their efforts and cooperation in producing what we believe is the most comprehensive treatment of synchrotron radiation research to date.







Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics


Book Description

These volumes contain 365 of the 505 papers presented at the VUV-11 Conference, held at Rikkyo University, Tokyo, from August 27th to September 1st 1995. The papers are divided into three sections: atomic and molecular spectroscopy, solid state spectroscopy and instrumentation and technological applications. New aspects presented were both quantitative and qualitative improvements in fluorescence spectroscopy and magnetic circular dichroism measurements. The fluorescence data are complementary to those of photoemission in a sense but they appear to open up a new method to analyze the optical excitation and relaxation processes. The application of magnetic circular dichroism has proved to be useful not only in analyzing the electronic structures of magnetic materials but also in practical applications to material engineering as found in experiments combined with photoelectron microscopy. Excellent developments in applications are only found in the field of surface photochemistry, where the technique of etching using VUV light has been appreciably refined. Although the majority of distinctive scientific features in the VUV-11 Conference have been brought about by the application of synchrotron radiation, experiments using a different type of light source appear to have progressed steadily. This is evident in the studies of plasma radiation.




New Directions in Research with Third-Generation Soft X-Ray Synchrotron Radiation Sources


Book Description

Soft X-rays are a powerful probe of matter. They interact selectively with electrons in atoms and molecules and can be used to study atomic physics, chemical reactions, surfaces and solids, and biological entities. Over the past 20 years, synchrotrons have emerged as powerful sources of soft X-rays for experimental use. A new, third generation of synchrotron light sources is scheduled to start operation over the next few years, beginning in 1993. These facilities are distinguished by their ultra-low emittance electron beams and by their undulators -- precisely engineered magnetic devices that cause the electrons passing through them to produce highly coherent X-rays and ultraviolet light of unprecedented spectral brightness. This volume emphasizes third-generation sources that produce light in the 10 eV--10 KeV energy range. It describes potential applications ranging from the purely scientific to the commercially viable and includes chapters on the practical aspects of designing undulators and beam line optics. Unique in its coverage, the book is a vital addition to the library of any scientist who needs information on the world's most advanced imaging and spectroscopic techniques. (ABSTRACT) This volume emphasizes the applications of new third generation synchrotron radiation sources that produce light in the ultraviolet and soft X-ray range of the spectrum. The unprecedented brightness of this light enables experiments to be conducted with greatly increased spatial and spectral resolution. Scientists can exploit these properties for imaging and spectroscopic applications that until now were impossible or impractical. Prominent researchers in the field describe these applications and others made possible by the light's pulsed time structure and polarization. The volume also includes chapters on the practical aspects of designing undulators and beam line optics.




Handbook on Synchrotron Radiation


Book Description

Volume 2 of this series concentrates on the use of synchrotron radiation which covers that region of the electromagnetic spectrum which extends from about 10eV to 3keV in photon energy and is essentially the region where the radiation is strongly absorbed by atmospheric gases. It therefore has to make extensive use of a high vacuum to transport the radiation to the workstation where the presence of hard X-rays can cause extensive damage to both the optics and the targets used in the experimental rigs. The topics chosen for this volume have been limited to the disciplines of physics and chemistry.




Synchrotron Radiation and Free-Electron Lasers


Book Description

Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comprehensive resource for graduate students, researchers and practitioners who design, manage or use X-ray facilities.




Gratings, Mirrors and Slits


Book Description

Intended to provide scientists and engineers at synchrotron radiation facilities with a sound and convenient basis for designing beamlines for monochromatic soft x-ray radiation, this text will also be helpful to the users of synchrotron radiation who want to help ensure that beamlines being built are optimized for the experiments to be performed on them. The primary purpose of a beamline is to capture as much of the light of the source as possible and then to transfer the desired portion of that light as completely as possible to the experiment. With the development of dedicated, brilliant synchrotron radiation sources, the first half of the task has been greatly simplified. The beamline designer must contend with the second half of the problem -- conserving the brilliance of the source through an optical system which monochromatizes and focuses the radiation.




1981 New England Section Topical Meeting on Nonoxide Ceramics


Book Description

This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.




Optical Systems for Soft X Rays


Book Description

A fundamental problem in cell biology is the cause of aging. The solution to this problem has not yet been obtained because,(l) until recently, it was not possible to image living cells directly. The use of low-energy (soft) X rays has made such imaging possible, perhaps thereby allowing the aging process to be understood and possibly overcome (a result that may well generate further social, moral, and ethical problems). Fortun ately this is not the only aspect of cell biology amenable to soft X-ray imaging, and it is envisaged that many less controversial studies--such as investigations of the detailed differences between healthy and diseased or malignant cells (in their natural states) and processes of cell division and growth-will be made possible. The use of soft X rays is not limited to biological studies-many applications are possible in, for example, fusion research, materials science, and astronomy. Such studies have only recently begun in earnest because several difficulties had to be overcome, major among these being the lack (for some purposes) of sufficiently intense sources, and the technological difficulties associated with making efficient optical systems. As is well known, the advent of dedicated synchrotron radiation sources, in particular, has alleviated the first of these difficulties, not just for the soft X-ray region. It is the purpose of this book to consider progress in the second.




Synchrotron Radiation


Book Description

Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.