Heterogeneous Photocatalysis: Photoassisted Oxidation of Isopropanol to Acetone and Photodegradation of Volatile Organic Compounds


Book Description

Recently, a highly efficient photocatalyst consisting of amorphous manganese oxide (AMO) has been developed. Photoassisted catalytic oxidation of isopropanol has been studied by using amorphous manganese oxide catalysts with magnesium oxide as a diluent. When AMO or AMO/MgO is illuminated with UV-visible light in the presence of isopropanol vapor and oxygen at room temperature, the primary organic oxidation product is acetone. Enhanced yields for photooxidation of isopropanol with AMO/MgO mixtures have been observed. A continuous supply of oxygen may be achieved by adsorbing molecular oxygen on AMO and AMO/MgO during simultaneous irradiation in the UV-visible range. Temperature programmed desorption and oxygen isotopic exchange results support previously proposed mechanisms of photoassisted catalytic oxidation. Oxygen is adsorbed as O$\sb2\sp-$ species on the surface of the catalyst and plays an important role in this photooxidation. The observed effect of magnesium oxide suggests that hydroxyl groups promote the catalytic activity. The contamination of indoor air by volatile organic compounds (VOCs) has become a serious public health problem in recent years. The purpose of this study is to investigate photocatalytic activity of TiO$\sb2$ under kinetic conditions and the application of photocatalysts for decomposition of VOCs. The photocatalytic degradation of trichloroethylene, toluene, and triethylamine over TiO$\sb2$ (anatase) has been investigated by using a flat plate photochemical reactor. TiO$\sb2$ was used as a thin film coated on a microscope slide. The degradation of the three compounds, trichloroethylene, toluene, and triethylamine in a continuous flow mode, approximates first-order kinetics. The Langmuir-Hinshelwood kinetics have been used to rationalize the first-order behavior in solid-gas reaction. The deactivation of the catalyst also was investigated.




Design of Thermal Oxidation Systems for Volatile Organic Compounds


Book Description

Controlling the emission of volatile organic compounds (VOC) became a very prominent environmental issue with the passage of the 1990 Clean Air Act Amendments, and will continue to be an environmental priority through the next decade. No single technology has played as important a role in the control of VOC emissions as thermal oxidation. It has the ability to destroy VOCs in a one-step process that produces innocuous by-products. Design of Thermal Oxidation Systems for Volatile Organic Compounds provides all the information needed for developing a thermal oxidation design in a single reference. It covers design, operation, and maintenance as well as the principles behind the classification of volatile organic compounds as hazardous waste. The author explores the primary purpose of thermal oxidizers and discusses their limitations. The book provides: practical, complete, and concise thermal oxidizer design principles an outline of state-of-the-art design principles a practical rather than theoretical approach real industrial examples in each chapter With the new regulations that affect VOC emissions, engineers from such diverse fields as oil refining, chemical distillation and separation processes, and pharmaceutical industries will need to design and implement thermal oxidation systems. Design of Thermal Oxidation Systems for Volatile Organic Compounds provides a reference to the entire design process, from conceptualization to operation and maintenance.







Photocatalytic Oxidation of Volatile Organic Compounds for Indoor Air Applications


Book Description

Photocatalytic oxidation (PCO) is a promising and emerging technique in controlling indoor air contaminants, including volatile organic compounds (VOCs). It has broad air cleaning and deodorization applications in indoor environments ranging from residential and office buildings to healthcare and nursing facilities as well as spacecrafts, aircraft cabins and clean rooms in the agricultural and food industry. Numerous studies have been conducted to improve the effectiveness and performance of this technology. These include development of new configurations, energy-efficient catalysts and other parameters to control the process. However, only limited research has been conducted under realistic indoor environmental conditions. One of the most recent developments in photocatalysis is the synthesis of 2% C- and V-doped TiO[subscript]2, which is active under both dark and visible light conditions. However, like most research conducted in photocatalysis, the study on the reactivity of this catalyst has been performed only under laboratory conditions. This study investigated the possible application of the novel C and V co-doped TiO[subscript]2 in cleaning indoor air. Mathematical modeling and simulation techniques were employed to assess the potential use of some of the promising systems that utilize the catalyst (i.e., packed bed and thin films) as well as the effect of mass transfer limitations in the degradation of acetaldehyde, one of the VOCs that can be found in offices, residential buildings and other facilities.




Volatile Organic Compounds By-products Generation in Photocatalytic Oxidation Reactor


Book Description

The presence of volatile organic compounds (VOCs) in indoor air is inevitable. Their adverse effect on human health has encouraged researchers to develop various technologies for air pollution remediation. Photocatalytic oxidation (PCO) has been regarded as a promising and emerging technique for air purification and extensively investigated in the last two decades to characterize and improve the effectiveness and performance of this technology. In addition, the development of appropriate models can enhance the understanding of reactor performance and the evaluation of intrinsic kinetic parameters that enable the scale-up or re-design of more efficient large-scale photocatalytic reactors. This research works on mathematical modeling of gas phase photocatalytic reactors and analyses different key factors that can enhance pollutants decomposition. At the first step, a one-dimensional time-dependent mathematical model for continuous flow UV-PCO reactor has been developed. In this model, transfer of pollutants by advection and dispersion in bulk phase incorporates with the reaction rate based on the extended Langmuir Hinshelwood model in the catalyst phase. CFD modeling was also used to determine the flow distribution in the reactor at various airflow rates. Moreover, the light intensity distribution on the photocatalyst surface was simulated using the linear source spherical emission model. A dimensionless form of the model was then proposed to generalize the result for any scale. The proposed model was validated first by comparing with predictions of other models (inter-model comparison) and then by experimental data from two different scales (pilot and bench) of UV-PCO reactors. Furthermore, a sensitivity analysis using dimensionless parameters was conducted to find the controlling step in the PCO process. To validate the model, acetone, MEK, and toluene were tested in the UV-PCO reactor with a commercial PCO filter (TiO2 coated on silica fiber felts) at various operating conditions, such as concentration, relative humidity, irradiance and air velocity. The main issue for applying PCO technology in the indoor environment is the generation of hazardous by-products. The effect of by-products formation was usually ignored in former modeling studies. The next effort was to improve the model and build a comprehensive one to consider by-products generation in the UV-PCO reactor. To achieve this goal, a possible reaction pathway for degradation of each challenge compound was proposed based on identified by-products in analytical methods (GC-MS and HPLC). Different possible reaction rate scenarios were evaluated to find the best expression fitted to experimental data at the steady-state condition. The obtained reaction coefficients were then used to validate the model under various operating conditions. Finally, the Health Risk Index was used to investigate the implications of generated by-products on human health under varying operating conditions. The results indicated that the proposed model has a great potential to simulate the behavior of UV-PCO reactor in a real application.




Heterogeneous Photocatalysis


Book Description

Photocatalysis is a reaction which is accelerated by light while a heterogeneous reaction consists of two phases ( a solid and a liquid for example). Heterogeneous Photocatalysis is a fast developing science which to date has not been fully detailed in a monograph. This title discusses the basic principles of heterogeneous photocatalysis and describes the bulk and surface properties of semiconductors. Applications of various types of photoreactions are described and the problems related to the modeling and design of photoreactors are covered.




Investigation of Key Parameters Influencing the Efficient Photocatalytic Oxidation of Indoor Volatile Organic Compounds (VOCs).


Book Description

Photocatalytic oxidation of indoor VOCs has the potential to eliminate pollutants from indoor environments, thus effectively improving and/or maintaining indoor air quality while reducing ventilation energy costs. Design and operation of UV photocatalytic oxidation (UVPCO) air cleaners requires optimization of various parameters to achieve highest pollutant removal efficiencies while avoiding the formation of harmful secondary byproducts and maximizing catalyst lifetime.




Low-Temperature Catalytic Oxidation of Airborne Organic Materials


Book Description

Eltron Research Inc. has developed multi-component metal oxide catalysts for destruction of volatile organic compounds (VOCs) in air at low temperatures. The goal for this work is to produce a simple, cost-effective technology for reducing the concentration of VOCs in air to acceptable levels before the air is released into the atmosphere or recirculated. Specific applications include ventilated work spaces for spray painting and engine maintenance (degreasing and fuel line repair), indoor air decontamination, dry cleaning, food processing (grills and deep fryers), fume hoods, residential use, and solvent-intensive industrial processes. The components of the catalysts were chosen based on their anticipated oxygen surface mobility, moisture tolerance, multiple oxidation states, and documented activity for oxidation reactions. Catalyst powders and monolith- supported catalysts were screened for conversion of 1 -butanol, toluene, and MEK to carbon dioxide and water. The concentrations of VOCs in the feedstream were maintained at 100 ppm, and the space velocity was 6,000 hr( -1). Catalysts highlighted in this document generated complete conversion of 1-butanol to CO2 at l50C, 69% conversion at lOOC, and 15% conversion at 80C. For toluene, complete conversion was achieved at 200C, and greater than 30% conversion at 150C. Catalysts deposited onto cordierite monoliths retained their composition and activity, and were stable in humid air. However, sulfur- and phosphorous-containing compounds quickly poisoned these catalysts through formation of sulfates and phosphates.




Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications


Book Description

An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.