Validation Analysis of the Shoal Groundwater Flow and Transport Model


Book Description

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model despite the transient nature of the heads, the newly acquired MV hydraulic head values were trended back to their likely values in 1999, the date of the calibration measurements. Additional statistical tests are performed using both the backward-projected MV heads and the observed heads to identify acceptable model realizations. A jackknife approach identified two possible threshold values to consider. For the analysis using the backward-trended heads, either 458 or 818 realizations (out of 1,000) are found acceptable, depending on the threshold chosen. The analysis using the observed heads found either 284 or 709 realizations acceptable. The impact of the refined set of realizations on the contaminant boundary was explored using an assumed starting mass of a single radionuclide and the acceptable realizations from the backward-trended analysis.




Validation, Proof-of-Concept, and Postaudit of the Groundwater Flow and Transport Model of the Project Shoal Area


Book Description

The groundwater flow and radionuclide transport model characterizing the Shoal underground nuclear test has been accepted by the State of Nevada Division of Environmental Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between DOE and the State of Nevada, the next steps in the closure process for the site are then model validation (or postaudit), the proof-of-concept, and the long-term monitoring stage. This report addresses the development of the validation strategy for the Shoal model, needed for preparing the subsurface Corrective Action Decision Document-Corrective Action Plan and the development of the proof-of-concept tools needed during the five-year monitoring/validation period. The approach builds on a previous model, but is adapted and modified to the site-specific conditions and challenges of the Shoal site.







Groundwater Model Validation for the Project Shoal Area, Corrective Action


Book Description

Stoller has examined newly collected water level data in multiple wells at the Shoal site. On the basis of these data and information presented in the report, we are currently unable to confirm that the model is successfully validated. Most of our concerns regarding the model stem from two findings: (1) measured water level data do not provide clear evidence of a prevailing lateral flow direction; and (2) the groundwater flow system has been and continues to be in a transient state, which contrasts with assumed steady-state conditions in the model. The results of DRI's model validation efforts and observations made regarding water level behavior are discussed in the following sections. A summary of our conclusions and recommendations for a path forward are also provided in this letter report.




Applied Groundwater Modeling


Book Description

This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies. Explains how to formulate a conceptual model of a groundwater system and translate it into a numerical model Demonstrates how modeling concepts, including boundary conditions, are implemented in two groundwater flow codes-- MODFLOW (for finite differences) and FEFLOW (for finite elements) Discusses particle tracking methods and codes for flowpath analysis and advective transport of contaminants Summarizes parameter estimation and uncertainty analysis approaches using the code PEST to illustrate how concepts are implemented Discusses modeling ethics and preparation of the modeling report Includes Boxes that amplify and supplement topics covered in the text Each chapter presents lists of common modeling errors and problem sets that illustrate concepts







Groundwater Models for Resources Analysis and Management


Book Description

Written by renowned experts in the field, this book assesses the status of groundwater models and defines models and modeling needs in the 21st century. It reviews the state of the art in model development and application in regional groundwater management, unsaturated flow/multiphase flow and transport, island modeling, biological and virus transport, and fracture flow. Both deterministic and stochastic aspects of unsaturated flow and transport are covered. The book also introduces a unique assessment of models as analysis and management tools for groundwater resources. Topics covered include model vs. data uncertainty, accuracy of the dispersion/convection equation, protocols for model testing and validation, post-audit studies, and applying models to karst aquifers.




Groundwater Modeling


Book Description




Effective Groundwater Model Calibration


Book Description

Methods and guidelines for developing and using mathematical models Turn to Effective Groundwater Model Calibration for a set of methods and guidelines that can help produce more accurate and transparent mathematical models. The models can represent groundwater flow and transport and other natural and engineered systems. Use this book and its extensive exercises to learn methods to fully exploit the data on hand, maximize the model's potential, and troubleshoot any problems that arise. Use the methods to perform: Sensitivity analysis to evaluate the information content of data Data assessment to identify (a) existing measurements that dominate model development and predictions and (b) potential measurements likely to improve the reliability of predictions Calibration to develop models that are consistent with the data in an optimal manner Uncertainty evaluation to quantify and communicate errors in simulated results that are often used to make important societal decisions Most of the methods are based on linear and nonlinear regression theory. Fourteen guidelines show the reader how to use the methods advantageously in practical situations. Exercises focus on a groundwater flow system and management problem, enabling readers to apply all the methods presented in the text. The exercises can be completed using the material provided in the book, or as hands-on computer exercises using instructions and files available on the text's accompanying Web site. Throughout the book, the authors stress the need for valid statistical concepts and easily understood presentation methods required to achieve well-tested, transparent models. Most of the examples and all of the exercises focus on simulating groundwater systems; other examples come from surface-water hydrology and geophysics. The methods and guidelines in the text are broadly applicable and can be used by students, researchers, and engineers to simulate many kinds systems.




Calibration of a Groundwater Flow and Contaminant Transport Computer Model


Book Description

A groundwater flow and contaminant transport model calibration was performed to evaluate the ability of a typical, verified computer code to simulate groundwater tracer migration in the shallow aquifer of the Conasauga Group. Previously, standard practice site data interpretation and groundwater modeling resulted in inaccurate simulations of contaminant transport direction and rate compared with tracer migration behavior. The site's complex geology, the presence of flow in both fractured and weathered zones, and the transient character of flow in the shallow aquifer combined to render inaccurate assumptions of steady-state, homogeneous groundwater flow. The improvement of previous modeling results required iterative phases of conceptual model development, hypothesis testing, site field investigations, and modeling. The activities focused on generating a model grid that was compatible with site hydrogeologic conditions and on establishing boundary conditions based on site data. An annual average water table configuration derived from site data and fixed head boundary conditions was used as input for flow modeling. The contaminant transport model was combined with the data-driven flow model to obtain a preliminary contaminant plume. Calibration of the transport code was achieved by comparison with site tracer migration and concentration data. This study documents the influence of fractures and the transient character of flow and transport in the shallow aquifer. Although compatible with porous medium theory, site data demonstrate that the tracer migration pathway would not be anticipated using conventional porous medium analysis. 126 figs., 22 refs., 5 tabs.