Distribution of Values of Holomorphic Mappings


Book Description

A vast literature has grown up around the value distribution theory of meromorphic functions, synthesized by Rolf Nevanlinna in the 1920s and singled out by Hermann Weyl as one of the greatest mathematical achievements of this century. The multidimensional aspect, involving the distribution of inverse images of analytic sets under holomorphic mappings of complex manifolds, has not been fully treated in the literature. This volume thus provides a valuable introduction to multivariate value distribution theory and a survey of some of its results, rich in relations to both algebraic and differential geometry and surely one of the most important branches of the modern geometric theory of functions of a complex variable. Since the book begins with preparatory material from the contemporary geometric theory of functions, only a familiarity with the elements of multidimensional complex analysis is necessary background to understand the topic. After proving the two main theorems of value distribution theory, the author goes on to investigate further the theory of holomorphic curves and to provide generalizations and applications of the main theorems, focusing chiefly on the work of Soviet mathematicians.







Value Distribution Theory and Related Topics


Book Description

The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.




Value Distribution Theory Related to Number Theory


Book Description

The subject of the book is Diophantine approximation and Nevanlinna theory. This book proves not just some new results and directions but challenging open problems in Diophantine approximation and Nevanlinna theory. The authors’ newest research activities on these subjects over the past eight years are collected here. Some of the significant findings are the proof of Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, generalized abc-conjecture, and more.




Entire Holomorphic Mappings in One and Several Complex Variables


Book Description

The present monograph grew out of the fifth set of Hermann Weyl Lectures, given by Professor Griffiths at the Institute for Advanced Study, Princeton, in fall 1974. In Chapter 1 the author discusses Emile Borel's proof and the classical Jensen theorem, order of growth of entire analytic sets, order functions for entire holomorphic mappings, classical indicators of orders of growth, and entire functions and varieties of finite order. Chapter 2 is devoted to the appearance of curvature, and Chapter 3 considers the defect relations. The author considers the lemma on the logarithmic derivative, R. Nevanlinna's proof of the defect relation, and refinements of the classical case.




Unicity of Meromorphic Mappings


Book Description

For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.




Value-distribution Theory


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.







Value Distribution Theory


Book Description




Value Distribution of Meromorphic Functions


Book Description

"This book contains a comprehensive exposition of the Nevanlinna theory of meromorphic functions of one complex variable, with detailed study of deficiencies, value distribution, and asymptotic properties of meromorphic functions." "The main body of the book is a translation of the Russian original published in 1970, which has been one of the most popular sources in this field since then. New references and footnotes related to recent achievements in the topics considered in the original edition have been added and a few corrections made. A new Appendix with a survey of the results obtained after 1970 and extensive bibliography has been written by Alexandre Ermenko and James K. Langley for this English edition." "The only prerequisite for understanding material of this book is an undergraduate course in the theory of functions of one complex variable."--BOOK JACKET.