Vapour–Liquid Equilibrium


Book Description

Vapor-Liquid Equilibrium, Second Edition covers the theoretical principles and methods of calculation of equilibrium conditions from various experimental data and the elements of measuring technique, as well as the instruments for the direct determination of the equilibrium compositions of the liquid and vapor phases of the system. The book discusses the relations necessary for the thermodynamic treatment of the equilibrium between the liquid and vapor phase of a system; the concept of an ideal solution and auxiliary thermodynamic functions; and the activity and the activity coefficient. The text also describes vapor-liquid equilibrium in real systems (electrolytes and non-electrolytes) and in systems whose components (i.e. temperature, pressure, and composition of phases) mutually react according to several stoichiometric equations. The criteria of purity of substances and the methods of measuring temperature; low, medium, and high pressures; the pressures of the saturated vapors at given temperatures; and the boiling points at given pressures used in laboratory work in the field of vapor-liquid equilibrium are considered. The book also tackles the methods for the direct determination of equilibrium data (distillation, circulation, static, dew and bubble point, and flow methods). The text concludes with a review of the literature on the systems whose vapor-liquid equilibrium data had been measured and reported to the beginning of 1954. Workers in the chemical industry who deal with problems of distillation and rectification will find the book useful.




Equations of State


Book Description




Gas Extraction


Book Description

Application of compressed gases as solvents has found widespread interest within the scientific community. Its processes have industrial applications. Gas Extraction deals with the possibilities of supercritical gases as solvents for separation processes. The volume combines physico-chemical aspects with chemical engineering methods. The text generalizes as far as possible, and treats examples in detail. Gas Extraction covers, for the first time, the subject in textbook form. Most of the examples provide new results that will be helpful for practicing scientists, engineers, and students who want to make use of the techniques.




Distillation Design and Control Using Aspen Simulation


Book Description

A timely treatment of distillationcombining steady-state designand dynamic controllability As the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle. Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of this vital technology from the dual perspectives of steady-state design and dynamics. Where traditional design texts have focused mainly on the steady-state economic aspects of distillation design, William Luyben also addresses such issues as dynamic performance in the face of disturbances. Utilizing the commercial simulators Aspen Plus and Aspen Dynamics, the text guides future and practicing chemical engineers first in the development of optimal steady-state designs of distillation systems, and then in the development of effective control structures. Unique features of the text include: * In-depth coverage of the dynamics of column design to help develop effective control structures for distillation columns * Development of rigorous simulations of single distillation columns and sequences of columns * Coverage of design and control of petroleum fractionators Encompassing nearly four decades of research and practical developments in this dynamic field, the text represents an important reference for both students and experienced engineers faced with distillation problems.




Working Guide to Vapor-Liquid Phase Equilibria Calculations


Book Description

Working Guide to Vapor-Liquid Phase Equilibria Calculations offers a practical guide for calculations of vapor-phase equilibria. The book begins by introducing basic concepts such as vapor pressure, vapor pressure charts, equilibrium ratios, and flash calculations. It then presents methods for predicting the equilibrium ratios of hydrocarbon mixtures: Wilson's correlation, Standing's correlation, convergence pressure method, and Whitson and Torp correlation. The book describes techniques to determine equilibrium ratios of the plus fraction, including Campbell's method, Winn's method, and Katz's method. The remaining chapters cover the solution of phase equilibrium problems in reservoir and process engineering; developments in the field of empirical cubic equations of state (EOS) and their applications in petroleum engineering; and the splitting of the plus fraction for EOS calculations. - Includes explanations of formulas - Step by step calculations - Provides examples and solutions




The Properties of Gases and Liquids 5E


Book Description

Must-have reference for processes involving liquids, gases, and mixtures Reap the time-saving, mistake-avoiding benefits enjoyed by thousands of chemical and process design engineers, research scientists, and educators. Properties of Gases and Liquids, Fifth Edition, is an all-inclusive, critical survey of the most reliable estimating methods in use today --now completely rewritten and reorganized by Bruce Poling, John Prausnitz, and John O’Connell to reflect every late-breaking development. You get on-the-spot information for estimating both physical and thermodynamic properties in the absence of experimental data with this property data bank of 600+ compound constants. Bridge the gap between theory and practice with this trusted, irreplaceable, and expert-authored expert guide -- the only book that includes a critical analysis of existing methods as well as hands-on practical recommendations. Areas covered include pure component constants; thermodynamic properties of ideal gases, pure components and mixtures; pressure-volume-temperature relationships; vapor pressures and enthalpies of vaporization of pure fluids; fluid phase equilibria in multicomponent systems; viscosity; thermal conductivity;diffusion coefficients; and surface tension.




Handbook of Clean Energy Systems, 6 Volume Set


Book Description

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.




Vapor-Liquid Equilibria Using Unifac


Book Description

Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method focuses on the UNIFAC group-contribution method used in predicting quantitative information on the phase equilibria during separation by estimating activity coefficients. Drawing on tested vapor-liquid equilibrium data on which UNIFAC is based, it demonstrates through examples how the method may be used in practical engineering design calculations. Divided into nine chapters, this volume begins with a discussion of vapor and liquid phase nonidealities and how they are calculated in terms of fugacity and activity coefficients, respectively. It then introduces the reader to the UNIFAC method and how it works, the procedure used in establishing the parameters needed for the model, prediction of binary and multicomponent vapor-liquid equilibria for a large number of systems, the potential of UNIFAC for predicting liquid-liquid equilibria, and how UNIFAC can be used to solve practical distillation design problems. This book will benefit process design engineers who want to reliably predict phase equilibria for designing distillation columns and other separation processes.




Fluid Mechanics for Chemical Engineers


Book Description

Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Two brand new chapters are included. The first, on mixing, augments the book's coverage of practical issues encountered in this field. The second, on computational fluid dynamics (CFD), shows students the connection between hand and computational fluid dynamics.




Applied Chemical Engineering Thermodynamics


Book Description

Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.