Vapour–Liquid Equilibrium Data at Normal Pressures


Book Description

Vapour-Liquid Equilibrium Data at Normal Pressures presents the direct experimental data of a set of selected systems and correlates the data with the aid of equations expressing the dependence of the activity coefficients or separation functions on the composition of the liquid phase. In the last columns of the tables, the deviations of the calculated from the direct experimental data are presented which give information on the quality of the data and on the flexibility of the correlation relations used. The text also describes the correlation of data in two-, three-, four-, and more than four-component systems.




Vapour–Liquid Equilibrium


Book Description

Vapor-Liquid Equilibrium, Second Edition covers the theoretical principles and methods of calculation of equilibrium conditions from various experimental data and the elements of measuring technique, as well as the instruments for the direct determination of the equilibrium compositions of the liquid and vapor phases of the system. The book discusses the relations necessary for the thermodynamic treatment of the equilibrium between the liquid and vapor phase of a system; the concept of an ideal solution and auxiliary thermodynamic functions; and the activity and the activity coefficient. The text also describes vapor-liquid equilibrium in real systems (electrolytes and non-electrolytes) and in systems whose components (i.e. temperature, pressure, and composition of phases) mutually react according to several stoichiometric equations. The criteria of purity of substances and the methods of measuring temperature; low, medium, and high pressures; the pressures of the saturated vapors at given temperatures; and the boiling points at given pressures used in laboratory work in the field of vapor-liquid equilibrium are considered. The book also tackles the methods for the direct determination of equilibrium data (distillation, circulation, static, dew and bubble point, and flow methods). The text concludes with a review of the literature on the systems whose vapor-liquid equilibrium data had been measured and reported to the beginning of 1954. Workers in the chemical industry who deal with problems of distillation and rectification will find the book useful.




Vapor-Liquid Equilibria Using Unifac


Book Description

Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method focuses on the UNIFAC group-contribution method used in predicting quantitative information on the phase equilibria during separation by estimating activity coefficients. Drawing on tested vapor-liquid equilibrium data on which UNIFAC is based, it demonstrates through examples how the method may be used in practical engineering design calculations. Divided into nine chapters, this volume begins with a discussion of vapor and liquid phase nonidealities and how they are calculated in terms of fugacity and activity coefficients, respectively. It then introduces the reader to the UNIFAC method and how it works, the procedure used in establishing the parameters needed for the model, prediction of binary and multicomponent vapor-liquid equilibria for a large number of systems, the potential of UNIFAC for predicting liquid-liquid equilibria, and how UNIFAC can be used to solve practical distillation design problems. This book will benefit process design engineers who want to reliably predict phase equilibria for designing distillation columns and other separation processes.







Distillation


Book Description

Distillation Principles and Practice Second Edition covers all the main aspects of distillation including the thermodynamics of vapor/liquid equilibrium, the principles of distillation, the synthesis of distillation processes, the design of the equipment, and the control of process operation. Most textbooks deal in detail with the principles and laws of distilling binary mixtures. When it comes to multi-component mixtures, they refer to computer software nowadays available. One of the special features of the second edition is a clear and easy understandable presentation of the principles and laws of ternary distillation. The right understanding of ternary distillation is the link to a better understanding of multi-component distillation. Ternary distillation is the basis for a conceptual process design, for separating azeotropic mixtures by using an entrainer, and for reactive distillation, which is a rapidly developing field of distillation. Another special feature of the book is the design of distillation equipment, i.e. tray columns and packed columns. In practice, empirical know-how is preferably used in many companies, often in form of empirical equations, which are not even dimensionally correct. The objective of the proposed book is the derivation of the relevant equations for column design based on first principles. The field of column design is permanently developing with respect to the type of equipment used and the know-how of two-phase flow and interfacial mass transfer.







Modeling Vapor-Liquid Equilibria


Book Description

Reviews the latest developments in a subject relevant to professionals involved in the simulation and design of chemical processes - includes disk of computer programs.