High Performance Visualization


Book Description

Visualization and analysis tools, techniques, and algorithms have undergone a rapid evolution in recent decades to accommodate explosive growth in data size and complexity and to exploit emerging multi- and many-core computational platforms. High Performance Visualization: Enabling Extreme-Scale Scientific Insight focuses on the subset of scientific visualization concerned with algorithm design, implementation, and optimization for use on today’s largest computational platforms. The book collects some of the most seminal work in the field, including algorithms and implementations running at the highest levels of concurrency and used by scientific researchers worldwide. After introducing the fundamental concepts of parallel visualization, the book explores approaches to accelerate visualization and analysis operations on high performance computing platforms. Looking to the future and anticipating changes to computational platforms in the transition from the petascale to exascale regime, it presents the main research challenges and describes several contemporary, high performance visualization implementations. Reflecting major concepts in high performance visualization, this book unifies a large and diverse body of computer science research, development, and practical applications. It describes the state of the art at the intersection of scientific visualization, large data, and high performance computing trends, giving readers the foundation to apply the concepts and carry out future research in this area.




In Situ Visualization for Computational Science


Book Description

This book provides an overview of the emerging field of in situ visualization, i.e. visualizing simulation data as it is generated. In situ visualization is a processing paradigm in response to recent trends in the development of high-performance computers. It has great promise in its ability to access increased temporal resolution and leverage extensive computational power. However, the paradigm also is widely viewed as limiting when it comes to exploration-oriented use cases. Furthermore, it will require visualization systems to become increasingly complex and constrained in usage. As research efforts on in situ visualization are growing, the state of the art and best practices are rapidly maturing. Specifically, this book contains chapters that reflect state-of-the-art research results and best practices in the area of in situ visualization. Our target audience are researchers and practitioners from the areas of mathematics computational science, high-performance computing, and computer science that work on or with in situ techniques, or desire to do so in future.




Foundations of Data Visualization


Book Description

This is the first book that focuses entirely on the fundamental questions in visualization. Unlike other existing books in the field, it contains discussions that go far beyond individual visual representations and individual visualization algorithms. It offers a collection of investigative discourses that probe these questions from different perspectives, including concepts that help frame these questions and their potential answers, mathematical methods that underpin the scientific reasoning of these questions, empirical methods that facilitate the validation and falsification of potential answers, and case studies that stimulate hypotheses about potential answers while providing practical evidence for such hypotheses. Readers are not instructed to follow a specific theory, but their attention is brought to a broad range of schools of thoughts and different ways of investigating fundamental questions. As such, the book represents the by now most significant collective effort for gathering a large collection of discourses on the foundation of data visualization. Data visualization is a relatively young scientific discipline. Over the last three decades, a large collection of computer-supported visualization techniques have been developed, and the merits and benefits of using these techniques have been evidenced by numerous applications in practice. These technical advancements have given rise to the scientific curiosity about some fundamental questions such as why and how visualization works, when it is useful or effective and when it is not, what are the primary factors affecting its usefulness and effectiveness, and so on. This book signifies timely and exciting opportunities to answer such fundamental questions by building on the wealth of knowledge and experience accumulated in developing and deploying visualization technology in practice.




Advances in Visual Computing


Book Description

The two volume set LNCS 6938 and LNCS 6939 constitutes the refereed proceedings of the 7th International Symposium on Visual Computing, ISVC 2011, held in Las Vegas, NV, USA, in September 2011. The 68 revised full papers and 46 poster papers presented together with 30 papers in the special tracks were carefully reviewed and selected from more than 240 submissions. The papers of part I (LNCS 6938) are organized in computational bioimaging, computer graphics, motion and tracking, segmentation, visualization; mapping modeling and surface reconstruction, biomedical imaging, computer graphics, interactive visualization in novel and heterogeneous display environments, object detection and recognition. Part II (LNCS 6939) comprises topics such as immersive visualization, applications, object detection and recognition, virtual reality, and best practices in teaching visual computing.




Scientific Visualization


Book Description

Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, students interested in both overview and advanced topics, and those interested in knowing more about the visualization process.




Scientific and Statistical Database Management


Book Description

This book constitutes the refereed proceedings of the 21st International Conference on Scientific and Statistical Database Management, SSDBM 2009, held in New Orleans, LA, USA in June 2009. The 29 revised full papers and 12 revised short papers including poster and demo papers presented together with three invited presentations were carefully reviewed and selected from 76 submissions. The papers are organized in topical sections on improving the end-user experience, indexing, physical design, and energy, application experience, workflow, query processing, similarity search, mining, as well as spatial data.




Towards an Interdisciplinary Approach in Earth System Science


Book Description

This book describes the latest advances at the Helmholtz “Earth System Science Research School” where scientists from the Alfred Wegener Institute in Bremerhaven, the University of Bremen, and the Jacobs University are involved in research. One of the greatest challenges is understanding ongoing environmental changes. The longer the time scale the more components of the Earth system are involved, e.g. interannual and decadal variations are related to the coupled atmosphere-ocean-sea ice system, whereas longer variations like glacial-interglacial or Cenozoic transitions involve the carbon cycle, ice sheets and gateways. In order to get deep insights into Earth system science, observations, remote sensing, past environmental data, as well as modeling need to be integrated. These different approaches are traditionally taught in separated disciplines at bachelor and master levels. It is, therefore, necessary to bring these disciplines together in PhD programs.




Computational Science and Its Applications -- ICCSA 2013


Book Description

The five-volume set LNCS 7971-7975 constitutes the refereed proceedings of the 13th International Conference on Computational Science and Its Applications, ICCSA 2013, held in Ho Chi Minh City, Vietnam in June 2013. The 248 revised papers presented in five tracks and 33 special sessions and workshops were carefully reviewed and selected. The 46 papers included in the five general tracks are organized in the following topical sections: computational methods, algorithms and scientific applications; high-performance computing and networks; geometric modeling, graphics and visualization; advanced and emerging applications; and information systems and technologies. The 202 papers presented in special sessions and workshops cover a wide range of topics in computational sciences ranging from computational science technologies to specific areas of computational sciences such as computer graphics and virtual reality.




Visualization of Time-Oriented Data


Book Description

This is an open access book. Time is an exceptional dimension with high relevance in medicine, engineering, business, science, biography, history, planning, or project management. Understanding time-oriented data via visual representations enables us to learn from the past in order to predict, plan, and build the future. This second edition builds upon the great success of the first edition. It maintains a brief introduction to visualization and a review of historical time-oriented visual representations. At its core, the book develops a systematic view of the visualization of time-oriented data. Separate chapters discuss interaction techniques and computational methods for supporting the visual data analysis. Many examples and figures illustrate the introduced concepts and techniques. So, what is new for the second edition? First of all, the second edition is now published as an open-access book so that anyone interested in the visualization of time and time-oriented data can read it. Second, the entire content has been revised and expanded to represent state-of-the-art knowledge. The chapter on interaction support now includes advanced methods for interacting with visual representations of time-oriented data. The second edition also covers the topics of data quality as well as segmentation and labeling. The comprehensive survey of classic and contemporary visualization techniques now provides more than 150 self-contained descriptions accompanied by illustrations and corresponding references. A completely new chapter describes how the structured survey can be used for the guided selection of suitable visualization techniques. For the second edition, our TimeViz Browser, the digital pendant to the survey of visualization techniques, received a major upgrade. It includes the same set of techniques as the book, but comes with additional filter and search facilities allowing scientists and practitioners to find exactly the solutions they are interested in.




Readings in Information Visualization


Book Description

This groundbreaking book defines the emerging field of information visualization and offers the first-ever collection of the classic papers of the discipline, with introductions and analytical discussions of each topic and paper. The authors' intention is to present papers that focus on the use of visualization to discover relationships, using interactive graphics to amplify thought. This book is intended for research professionals in academia and industry; new graduate students and professors who want to begin work in this burgeoning field; professionals involved in financial data analysis, statistics, and information design; scientific data managers; and professionals involved in medical, bioinformatics, and other areas. Features Full-color reproduction throughout Author power team - an exciting and timely collaboration between the field's pioneering, most-respected names The only book on Information Visualization with the depth necessary for use as a text or as a reference for the information professional Text includes the classic source papers as well as a collection of cutting edge work