Variational Methods for the Study of Nonlinear Operators


Book Description

"The subject to which this book is devoted should be of interest both to pure mathematicians and to workers in applied sciences who are increaslingly often required to deal with nonlinear systems and their associated nonlinear equations. The main subject has up to the present time appeared only in Russian journals. As the author's techniques are directed mainly towards proving existence theorems (largely concerning nonlinear integral operators), rather than developing techniques for the actual solution of nonlinear equations, it was thought the addition of the last chapter of the Russian book "Functional analysis in normed spaces" by L.V. Kantorovich and G.P. Akilov devoted to the extension of Newton's method to nonlinear functional equations would substantially increase the usefulness of this translation"--Translator's preface.




Variational Principles of Continuum Mechanics with Engineering Applications


Book Description

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.




Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems


Book Description

This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.




Topological and Variational Methods for Nonlinear Boundary Value Problems


Book Description

In the rapidly developing area of nonlinear theory of differential equations, many important results have been obtained by the use of nonlinear functional analysis based on topological and variational methods. The survey papers presented in this volume represent the current state of the art in the subject. The methods outlined in this book can be used to obtain new results concerning the existence, uniqueness, multiplicity, and bifurcation of the solutions of nonlinear boundary value problems for ordinary and partial differential equations. The contributions to this volume are from well known mathematicians, and every paper contained in this book can serve both as a source of reference for researchers working in differential equations and as a starting point for those wishing to pursue research in this direction. With research reports in the field typically scattered in many papers within various journals, this book provides the reader with recent results in an accessible form.




Variational Methods in Mathematical Physics


Book Description

The first edition (in German) had the prevailing character of a textbook owing to the choice of material and the manner of its presentation. This second (translated, revised, and extended) edition, however, includes in its new parts considerably more recent and advanced results and thus goes partially beyond the textbook level. We should emphasize here that the primary intentions of this book are to provide (so far as possible given the restrictions of space) a selfcontained presentation of some modern developments in the direct methods of the cal culus of variations in applied mathematics and mathematical physics from a unified point of view and to link it to the traditional approach. These modern developments are, according to our background and interests: (i) Thomas-Fermi theory and related theories, and (ii) global systems of semilinear elliptic partial-differential equations and the existence of weak solutions and their regularity. Although the direct method in the calculus of variations can naturally be considered part of nonlinear functional analysis, we have not tried to present our material in this way. Some recent books on nonlinear functional analysis in this spirit are those by K. Deimling (Nonlinear Functional Analysis, Springer, Berlin Heidelberg 1985) and E. Zeidler (Nonlinear Functional Analysis and Its Applications, Vols. 1-4; Springer, New York 1986-1990).




Variational Methods in Shape Optimization Problems


Book Description

Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.




Variational Methods in Nonconservative Phenomena


Book Description

This book provides a comprehensive survey of analytic and approximate solutions of problems of applied mechanics, with particular emphasis on nonconservative phenomena. Include




Variational Principles of Continuum Mechanics


Book Description

The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky’s work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. This book, the second volume, describes how the variational approach can be applied to constructing models of continuum media, such as the theory of elastic plates; shells and beams; shallow water theory; heterogeneous mixtures; granular materials; and turbulence. It goes on to apply the variational approach to asymptotical analysis of problems with small parameters, such as the derivation of the theory of elastic plates, shells and beams from three-dimensional elasticity theory; and the basics of homogenization theory. A theory of stochastic variational problems is considered in detail too, along with applications to the homogenization of continua with random microstructures.




Topics in Nonlinear Functional Analysis


Book Description

Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz global bifurcation theorem. Stability of the branches is also studied. The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems. For more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.




Linking Methods in Critical Point Theory


Book Description

As is well known, The Great Divide (a.k.a. The Continental Divide) is formed by the Rocky Mountains stretching from north to south across North America. It creates a virtual "stone wall" so high that wind, rain, snow, etc. cannot cross it. This keeps the weather distinct on both sides. Since railroad trains cannot climb steep grades and tunnels through these mountains are almost formidable, the Canadian Pacific Railroad searched for a mountain pass providing the lowest grade for its tracks. Employees discovered a suitable mountain pass, called the Kicking Horse Pass, el. 5404 ft., near Banff, Alberta. (One can speculate as to the reason for the name.) This pass is also used by the Trans-Canada Highway. At the highest point of the pass the railroad tracks are horizontal with mountains rising on both sides. A mountain stream divides into two branches, one flowing into the Atlantic Ocean and the other into the Pacific. One can literally stand (as the author did) with one foot in the Atlantic Ocean and the other in the Pacific. The author has observed many mountain passes in the Rocky Mountains and Alps. What connections do mountain passes have with nonlinear partial dif ferential equations? To find out, read on ...