The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References




Current Catalog


Book Description

First multi-year cumulation covers six years: 1965-70.




Colonic Motility


Book Description

Three distinct types of contractions perform colonic motility functions. Rhythmic phasic contractions (RPCs) cause slow net distal propulsion with extensive mixing/turning over. Infrequently occurring giant migrating contractions (GMCs) produce mass movements. Tonic contractions aid RPCs in their motor function. The spatiotemporal patterns of these contractions differ markedly. The amplitude and distance of propagation of a GMC are several-fold larger than those of an RPC. The enteric neurons and smooth muscle cells are the core regulators of all three types of contractions. The regulation of contractions by these mechanisms is modifiable by extrinsic factors: CNS, autonomic neurons, hormones, inflammatory mediators, and stress mediators. Only the GMCs produce descending inhibition, which accommodates the large bolus being propelled without increasing muscle tone. The strong compression of the colon wall generates afferent signals that are below nociceptive threshold in healthy subjects. However, these signals become nociceptive; if the amplitudes of GMCs increase, afferent nerves become hypersensitive, or descending inhibition is impaired. The GMCs also provide the force for rapid propulsion of feces and descending inhibition to relax the internal anal sphincter during defecation. The dysregulation of GMCs is a major factor in colonic motility disorders: irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and diverticular disease (DD). Frequent mass movements by GMCs cause diarrhea in diarrhea predominant IBS, IBD, and DD, while a decrease in the frequency of GMCs causes constipation. The GMCs generate the afferent signals for intermittent short-lived episodes of abdominal cramping in these disorders. Epigenetic dysregulation due to adverse events in early life is one of the major factors in generating the symptoms of IBS in adulthood.




Research Awards Index


Book Description




Organic Nitrates


Book Description

Nitroglycerin and other organic nitrates have been used for over a century in the treatment of angina pectoris. Millions of patients, throughout the world, have placed nitroglycerin tablets under the tongue and have experienced rapid and dramatic relief from the chest pain that frequently occurs as a manifestation of disease of the coronary arteries. The empirical observation of the safe use of nitrates for tile alleviation of the symptoms of angina have led to their widespread medical acceptance. The use of organic nitrates preceded any knowledge of their mechanism of action or their ultimate metabolic fate. Thus, more simply stated, although sub lingual nitrates helped the patients, little was known concerning what these drugs do to the body or what the body does to the drugs. A substantial number of investigators have focused on these questions especially during the last two decades. We now have considerably more insight into the pathways of degradation of organic nitrates and the relationship of the metabolic processes to the biological action of these agents. Similarly, considerable effort has been expended in understanding the mechanism of action of these agents directly on vascular smooth muscle and on cardiac work and performance. Finally, there is a more substantive understanding of the physiology of the coronary circulation as well as the" pathophysiologic manifestations of myocardial disease.










Neural Control of Renal Function


Book Description

The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References




Aspects of Synaptic Transmission


Book Description

A collection of reviews on selected areas of synaptic transmission from neuroscientists in a number of areas of work in the nervous system and related disciplines. Five areas are covered - long-term potentiation, galanin, autonomic, opioids and 5-hydroxytryptamine.




Blood Vessels and Lymphatics in Organ Systems


Book Description

Blood Vessels and Lymphatics on Organ Systems provides an introduction to the general and the specific characteristics of blood vessels and lymphatics in organ systems. It offers a structured, multidisciplinary approach to the broad field of vascular science, emphasizing both established and recent concepts. These include vascular networks such as those in the pineal, parathyroids, pancreas, adrenals, adipose tissue, and special senses; and functions of vascular endothelium. The book is organized into two parts. Part One on the general properties of blood vessels and lymphatics deals with the general aspects of the arteries, veins, microcirculation, and lymphatic channels. Part Two discusses the embryologic, morphologic, physiologic, pharmacologic, pathophysiologic, and pathologic characteristics of blood and lymph circulations in each of the important organ systems. This book was written for graduate students in the areas of blood and lymph circulation and for advanced research workers or clinicians seeking sources of information on advances in cardiovascular science.