Vascular Transport in Plants


Book Description

Vascular Transport in Plants provides an up-to-date synthesis of new research on the biology of long distance transport processes in plants. It is a valuable resource and reference for researchers and graduate level students in physiology, molecular biology, physiology, ecology, ecological physiology, development, and all applied disciplines related to agriculture, horticulture, forestry and biotechnology. The book considers long-distance transport from the perspective of molecular level processes to whole plant function, allowing readers to integrate information relating to vascular transport across multiple scales. The book is unique in presenting xylem and phloem transport processes in plants together in a comparative style that emphasizes the important interactions between these two parallel transport systems. - Includes 105 exceptional figures - Discusses xylem and phloem transport in a single volume, highlighting their interactions - Syntheses of structure, function and biology of vascular transport by leading authorities - Poses unsolved questions and stimulates future research - Provides a new conceptual framework for vascular function in plants




Transport and Transfer Process in Plants


Book Description

Transport and Transfer Processes in Plants presents the proceedings of a symposium held in Canberra, Australia, in December 1975 under the auspices of the U.S.-Australia Agreement for Scientific and Technical Cooperation. It explores how organic materials and nutrients are distributed in plants and how plants are influenced by the interactions between various forms of both long- and short-distance transport. The book also considers how environmental factors regulate plant growth, how nutrients may be used in a more efficient manner, and how plants acquire disease. Divided into three parts encompassing 39 chapters, this book begins with an overview of the mechanisms underlying transport and distribution in plants; the effect of phloem capacity on plant growth and development; and short-distance transfer. It then introduces the reader to plasmodesmata and symplastic transport; how flow affects solute transport in plants; cytoplasmic streaming in characean algae; occurrence and function of transfer cells; movement of solutes from host to parasite in nematode infected roots; and nutrient uptake by roots and transport to the xylem. The book also discusses symplasmic transport and ion release to the xylem; regulation of nutrient uptake by cells and roots; transfer of ions and products of photosynthesis to guard cells; and vascular patterns in higher plants. It considers histochemical approaches to water-soluble compounds and their use in addressing problems of translocation; long-distance movement of tobacco mosaic virus in Nicotiana glutinosa; the influence of stomatal behavior on long-distance transport; and water transport through plants. This book will be a valuable resource for scientists, students, and researchers.




Biology for AP ® Courses


Book Description

Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.




Phloem Transport


Book Description

Ten years ago, at the International Botanical Congress in Edinburgh, a group of us from various countries discussed the difficulty of pursuing academic problems in depth at such meetings. In particular, we were discouraged at the poverty of time for phloem transport. From long association, we were conscious of the extraordinary breadth of the problem, from developmental through anatomical, to biophysical and physiological. Only by a reasonable understanding of all these components could one hope to come to some kind of understanding. We decided to establish common plant material so that data would have a common source. Similarly, we resolved to exchange information by circulating pre-publication manuscripts. For awhile, after the meeting was a pleasant memory, the plan seemed to be working; but, as is so often the case, human infirmities and foibles played early and, subsequently, predominant roles. Some became administrators (a punishment for good behaviour); others concentrated on alternative rings in their academic circuses. The next Congress (in Seattle) proved similar to its predecessor in its neglect and, consequently, succor was sought elsewhere. A little known, but remarkably understanding group becoming visible was the Science Committee and the Division of Scientific Affairs of N. A. T. O. Its sponsorship of Advanced Study Institutes including phytochemistry and phytophysics, was unusual both in the generosity of its funding and in the requirements for academic quality.




Solute Transport in Plants


Book Description

The study of solute transport in plants dates back to the beginnings of experimental plant physiology, but has its origins in the much earlier interests of humankind in agriculture. Given this lineage, it is not surprising that there have been many books on the transport of solutes in plants; texts on the closely related subject of mineral nutrition also commonly address the topic of ion transport. Why another book? Well, physiologists continue to make new discoveries. Particularly pertinent is the characterisation of enzymes that are able to transport protons across membranes during the hydrolysis of energy-rich bonds. These enzymes, which include the H + -A TPases, are now known to be crucial for solute transport in plants and we have given them due emphasis. From an academic point of view, the transport systems in plants are now appreciated as worthy of study in their own right-not just as an extension of those systems already much more widely investigated in animals. From a wider perspective, understanding solute transport in plants is fundamental to understanding plants and the extent to which they can be manipulated for agricultural purposes. As physiologists interested in the mechanisms of transport, we first set out in this book to examine the solutes in plants and where are they located. Our next consideration was to provide the tools by which solute movement can be understood: a vital part of this was to describe membranes and those enzymes catalysing transport.




Transport in Plants I


Book Description

When WILHELM RUHLAND developed his plan for an Encyclopedia of Plant Physiol ogy more than three decades ago, biology could still be conveniently subdivided into classical areas. Even within plant physiology, subdivisions were not too difficult to make, and general principles could be covered sufficiently in the two introductory volumes of the Encyclopedia on the physical and chemical basis of cell biology. But the situation changed rapidly even during the 12-year publication period of the Encyclopedia (1955-1967). The new molecular direction of genetics and structural research on biopolymers had an integrating effect on all other biological fields, including plant physiology, and it became increasingly difficult to keep previously distinct areas separated. RUHLAND'S overall plan included 18 volumes and about 22,000 pages. It covered the entire field of plant physiology, in most cases from the very beginning. But, as each volume appeared, it was clear that its content would soon be outdated.




Strasburger's Plant Sciences


Book Description

Structure, physiology, evolution, systematics, ecology.




Plant Hormones


Book Description

Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.




Inanimate Life


Book Description




Plant Hormones


Book Description

Plant hormones play a crucial role in controlling the way in which plants growand develop. Whilemetabolism providesthepowerand buildingblocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate these parts to produce the form that we recognize as a plant. In addition, theyplayacontrolling role inthe processes of reproduction. This book is a description ofthese natural chemicals: how they are synthesizedand metabolized; howthey work; whatwe knowoftheir molecular biology; how we measure them; and a description ofsome ofthe roles they play in regulating plant growth and development. Emphasis has also been placed on the new findings on plant hormones deriving from the expanding use ofmolecular biology as a tool to understand these fascinating regulatory molecules. Even at the present time, when the role of genes in regulating all aspects of growth and development is considered of prime importance, it is still clear that the path of development is nonetheless very much under hormonal control, either via changes in hormone levels in response to changes in gene transcription, or with the hormones themselves as regulators ofgene transcription. This is not a conference proceedings, but a selected collection ofnewly written, integrated, illustrated reviews describing our knowledge of plant hormones, and the experimental work that is the foundation of this knowledge.