Vectorial Mechanics


Book Description




EBOOK: Vector Mechanics for Engineers: Statics (SI units)


Book Description

Target AudienceThis text is designed for the first course in Statics offered in the sophomore year. OverviewThe main objective of a first course in mechanics should be to develop in the engineering student the ability to analyze any problem in a simple and logical manner and to apply to its solution a few, well-understood, basic principles. This text is designed to help the instructor achieve this goal. Vector analysis is introduced early in the text and is used in the presentation and discussion of the fundamental principles of mechanics. Vector methods are also used to solve many problems, particularly three-dimensional problems where these techniques result in a simpler and more concise solution. The emphasis in this text, however, remains on the correct understanding of the principles of mechanics and on their application to the solution of engineering problems, and vector analysis is presented chiefly as a convenient tool. In order to achieve the goal of being able to analyze mechanics problems, the text employs the following pedagogical strategy: Practical applications are introduced early. New concepts are introduced simply. Fundamental principles are placed in simple contexts. Students are given extensive practice through: sample problems, special sections entitled Solving Problems on Your Own, extensive homework problem sets, review problems at the end of each chapter, and computer problems designed to be solved with computational software. Resources Supporting This Textbook Instructor’s and Solutions Manual features typeset, one-per-page solutions to the end of chapter problems. It also features a number of tables designed to assist instructors in creating a schedule of assignments for their course. The various topics covered in the text have been listed in Table I and a suggested number of periods to be spent on each topic has been indicated. Table II prepares a brief description of all groups of problems. Sample lesson schedules are shown in Tables III, IV, and V, together with various alternative lists of assigned homework problems. For additional resources related to users of this SI edition, please visit http://www.mheducation.asia/olc/beerjohnston. McGraw-Hill Connect Engineering, a web-based assignment and assessment platform, is available at http://www.mhhe.com/beerjohnston, and includes algorithmic problems from the text, Lecture PowerPoints, an image bank, and animations. Hands-on Mechanics is a website designed for instructors who are interested in incorporating three-dimensional, hands-on teaching aids into their lectures. Developed through a partnership between the McGraw-Hill Engineering Team and the Department of Civil and Mechanical Engineering at the United States Military Academy at West Point, this website not only provides detailed instructions for how to build 3-D teaching tools using materials found in any lab or local hardware store, but also provides a community where educators can share ideas, trade best practices, and submit their own original demonstrations for posting on the site. Visit http://www.handsonmechanics.com. McGraw-Hill Tegrity, a service that makes class time available all the time by automatically capturing every lecture in a searchable format for students to review when they study and complete assignments. To learn more about Tegrity watch a 2-minute Flash demo at http://tegritycampus.mhhe.com.




Orbital Mechanics for Engineering Students


Book Description

Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems




Vectorial Mechanics


Book Description




Vectorial Mechanics


Book Description

Louis Brand's definitive guide to vectorial mechanics is essential reading for students and professionals alike. Covering topics such as force, motion, and equilibrium, this groundbreaking work provides a comprehensive and in-depth exploration of this essential field. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




A Textbook of Engineering Mechanics


Book Description







EBOOK: Vector Mechanics for Engineers: Dynamics (SI)


Book Description

Continuing in the spirit of its successful previous editions, the tenth edition of Beer, Johnston, Mazurek, and Cornwell's Vector Mechanics for Engineers provides conceptually accurate and thorough coverage together with a significant refreshment of the exercise sets and online delivery of homework problems to your students. Nearly forty percent of the problems in the text are changed from the previous edition. The Beer/Johnston textbooks introduced significant pedagogical innovations into engineering mechanics teaching. The consistent, accurate problem-solving methodology gives your students the best opportunity to learn statics and dynamics. At the same time, the careful presentation of content, unmatched levels of accuracy, and attention to detail have made these texts the standard for excellence.




Mechanics of Materials


Book Description

For the past forty years Beer and Johnston have been the uncontested leaders in the teaching of undergraduate engineering mechanics. Their careful presentation of content, unmatched levels of accuracy, and attention to detail have made their texts the standard for excellence. The revision of their classic Mechanics of Materials text features a new and updated design and art program; almost every homework problem is new or revised; and extensive content revisions and text reorganizations have been made. The multimedia supplement package includes an extensive strength of materials Interactive Tutorial (created by George Staab and Brooks Breeden of The Ohio State University) to provide students with additional help on key concepts, and a custom book website offers online resources for both instructors and students.