Automotive Exhaust Emissions and Energy Recovery


Book Description

Concerns for fuel economy and reduced emissions have turned the attention of automotive internal combustion engine manufacturers to the exhaust system and towards technological system development to account for the significant levels of potential energy that can be recovered. The present volume on Automotive Exhaust Emissions and Energy Recovery for both gasoline and diesel engines is therefore both timely and appropriate. Whereas diesel engines have been predominantly turbocharged, only a relatively small percentage of gasoline engines are similarly equipped, which has led to significant efforts by engine manufacturers in recent years to downsize and down-speed these engines. On the other hand, the relative focus in diesel engine development in terms of emissions and exhaust energy recovery has shifted toward devices other than the turbocharger for enhanced energy recovery and emissions control technologies in order to allow the diesel engines of the future to keep up with the dual-demand for very low emissions and increasing levels of fuel economy. The book focuses on the exhaust system and the technologies and methods used to reduce emissions and increase fuel economy by capitalising on the exhaust gas energy availability (either in the form of gas kinetic energy or as waste heat extracted from the exhaust gas). It is projected that in the short to medium term, advances in exhaust emissions and energy recovery technologies will lead the way in internal combustion engine development and pave the way towards increasing levels of engine hybridisation until fully electric vehicle technology can claim a level of maturity and corresponding market shares to turn the bulk of this focus away from the internal combustion engine. This book is aimed at engine research professionals in the industry and academia, but also towards students of powertrain engineering. The collection of articles in this book reviews the fundamentals of relevance, recent exhaust system technologies, details recent or on-going projects and uncovers future research directions and potentials.




Thermodynamics In Nuclear Power Plant Systems


Book Description

This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.










Organic Rankine Cycle Technology for Heat Recovery


Book Description

This book on organic Rankine cycle technology presents nine chapters on research activities covering the wide range of current issues on the organic Rankine cycle. The first section deals with working fluid selection and component design. The second section is related to dynamic modeling, starting from internal combustion engines to industrial power plants. The third section discusses industrial applications of waste heat recovery, including internal combustion engines, LNG, and waste water. A comprehensive analysis of the technology and application of organic Rankine cycle systems is beyond the aim of the book. However, the content of this volume can be useful for scientists and students to broaden their knowledge of technologies and applications of organic Rankine cycle systems.







Electric Vehicle Technology Explained


Book Description

Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.




Energy Management Handbook


Book Description




Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles


Book Description

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.