Vehicle Scanning Method for Bridges


Book Description

Presents the first ever guide for vehicle scanning of the dynamic properties of bridges Written by the leading author on the subject of vehicle scanning method (VSM) for bridges, this book allows engineers to monitor every bridge of concern on a regular and routine basis, for the purpose of maintenance and damage detection. It includes a review of the existing literature on the topic and presents the basic concept of extracting bridge frequencies from a moving test vehicle fitted with vibration sensors. How road surface roughness affects the vehicle scanning method is considered and a finite element simulation is conducted to demonstrate how surface roughness affects the vehicle response. Case studies and experimental results are also included. Vehicle Scanning Method for Bridges covers an enhanced technique for extracting higher bridge frequencies. It examines the effect of road roughness on extraction of bridge frequencies, and looks at a dual vehicle technique for suppressing the effect of road roughness. A filtering technique for eliminating the effect of road roughness is also presented. In addition, the book covers the identification of bridge mode shapes, contact-point response for modal identification of bridges, and damage detection of bridges—all through the use of a moving test vehicle. The first book on vehicle scanning of the dynamic properties of bridges Written by the leading author on the subject Includes a state-of-the-art review of the existing works on the vehicle scanning method (VSM) Presents the basic concepts for extracting bridge frequencies from a moving test vehicle fitted with vibration sensors Includes case studies and experimental results The first book to fully cover scanning the dynamic properties of bridges with a vehicle, Vehicle Scanning Method for Bridges is an excellent resource for researchers and engineers working in civil engineering, including bridge engineering and structural health monitoring.




Vehicle Scanning Method for Bridges


Book Description

Presents the first ever guide for vehicle scanning of the dynamic properties of bridges Written by the leading author on the subject of vehicle scanning method (VSM) for bridges, this book allows engineers to monitor every bridge of concern on a regular and routine basis, for the purpose of maintenance and damage detection. It includes a review of the existing literature on the topic and presents the basic concept of extracting bridge frequencies from a moving test vehicle fitted with vibration sensors. How road surface roughness affects the vehicle scanning method is considered and a finite element simulation is conducted to demonstrate how surface roughness affects the vehicle response. Case studies and experimental results are also included. Vehicle Scanning Method for Bridges covers an enhanced technique for extracting higher bridge frequencies. It examines the effect of road roughness on extraction of bridge frequencies, and looks at a dual vehicle technique for suppressing the effect of road roughness. A filtering technique for eliminating the effect of road roughness is also presented. In addition, the book covers the identification of bridge mode shapes, contact-point response for modal identification of bridges, and damage detection of bridges—all through the use of a moving test vehicle. The first book on vehicle scanning of the dynamic properties of bridges Written by the leading author on the subject Includes a state-of-the-art review of the existing works on the vehicle scanning method (VSM) Presents the basic concepts for extracting bridge frequencies from a moving test vehicle fitted with vibration sensors Includes case studies and experimental results The first book to fully cover scanning the dynamic properties of bridges with a vehicle, Vehicle Scanning Method for Bridges is an excellent resource for researchers and engineers working in civil engineering, including bridge engineering and structural health monitoring.




Vehicle-bridge Interaction Dynamics


Book Description

The commercial operation of the bullet train in 1964 in Japan marked the beginning of a new era for high-speed railways. Because of the huge amount of kinetic energy carried at high speeds, a train may interact significantly with the bridge and even resonate with it under certain circumstances. Equally important is the riding comfort of the train cars, which relates closely to the maneuverability of the train during its passage over the bridge at high speeds.This book is unique in that it is devoted entirely to the interaction between the supporting bridges and moving trains, the so-called vehicle-bridge interaction (VBI). Finite element procedures have been developed to treat interaction problems of various complexities, while the analytical solutions established for some typical problems are helpful for identifying the key parameters involved. Besides, some field tests were conducted to verify the theories established.This book provides an up-to-date coverage of research conducted on various aspects of the VBI problems. Using the series of VBI elements derived, the authors study a number of frontier problems, including the impact response of bridges with elastic bearings, the dynamic response of curved beam to moving centrifugal forces, the stability and derailment of trains moving over bridges shaken by earthquakes, the impact response of two trains crossing on a bridge, the steady-state response of trains moving over elevated bridges, and so on.




Computational and Experimental Simulations in Engineering


Book Description

This book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 29th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held in Shenzhen, China on May 26-29, 2023. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.




Feasibility Study of Mobile Scanning Technology for Fast Damage Detection of Rural Bridge Using Wireless Sensors


Book Description

This study aims at conducting the feasibility study on detecting damage of bridges through using passing vehicles and wireless sensors. As the first step, the finite element program has been compiled and some explorative tests have been conducted. It is found that the damage detection process is affected by the parameters of the vehicles and bridge, such as mass ratio, stiffness ratio, vehicle speed, bridge type, road roughness, etc. The theoretical results showed satisfied results of the proposed approach. Because of the scope and limitation of the testing in this study, however, further study will be needed to validate the applicability of this approach with advanced testing in the future.










Vibration of solids and structures under moving loads


Book Description

Transport engineering structures are subjected to loads that vary in both time and space. In general mechanics parlance such loads are called moving loads. It is the aim of the book to analyze the effects of this type of load on various elements, components, structures and media of engineering me chanics. In recent years all branches of transport have experienced great advances characterized by increasingly higher speeds and weights of vehicles. As a result, structures and media over or in which the vehicles move have been subjected to vibrations and dynamic stresses far larger than ever before. The author has studied vibrations of elastic and inelastic bodies and structures under the action of moving loads for many years. In the course of his career he has published a number of papers dealing with various aspects of the problem. On the strength of his studies he has arrived at the conclusion that the topic has so grown in scope and importance as to merit a comprehensive treatment. The book is the outcome of his attempt to do so in a single monograph.




Framework of Damage Detection in Vehicle-Bridge Coupled System


Book Description

Most vibration-based damage identification methods make use of measurements directly from bridge structures with attached sensors. The present study aimed to develop new methodologies to eventually detect bridge damages such as scour using the dynamic response of the vehicle. A framework of damage identification and an optimization method was developed first. Secondly, a new methodology using the transmissibility of vehicle and bridge responses was developed to detect bridge damages. Then, a tractor-trailer test system was designed to obtain reliable response and extract bridge modal properties from the dynamic response of moving vehicles. These developed methodologies were applied to detect scour damage from the response of bridge and/or vehicles. The scour effect on a single pile was studied and methods of scour damage detections were proposed. A monitoring system using fiber optic sensors was designed and tested in the laboratory and is being applied to a field bridge. Finally, the scour effect on the response of the entire bridge and the traveling vehicle was also investigated under the bridge-vehicle-wave interaction, which in turn was used to detect the bridge scour.