Vehicular Platoon System Design


Book Description

Vehicular Platoon System Design: Fundamentals and Robustness provides a comprehensive introduction to connected and automated vehicular platoon system design. Platoons decrease the distances between cars or trucks using electronic, and possibly mechanical, coupling. This capability allows many cars or trucks to accelerate or brake simultaneously. It also allows for a closer headway between vehicles by eliminating reacting distance needed for human reaction. The book considers the key issues of robustness and cybersecurity, with optimization-based model predictive control schemes applied to control vehicle platoon.In the controller design part, several practical problems, such as constraint handling, optimal control performance, robustness against disturbance, and resilience against cyberattacks are reviewed. In addition, the book provides detailed theoretical analysis of the stability of the platoon under different control schemes. - Provides a comprehensive introduction to the state-of-the-art development of connected and automated vehicular platoon systems - Covers the advanced, robust and stochastic model predictive control algorithm design methods for constraint handling and robustness improvement - Introduces rigorous theoretical stability analysis from the robust tube-based distributedMPC (Model Predictive Control) and stochastic tube-based distributed MPC perspectives - Offers various filter-based inter-vehicle attack detection methods and event-based resilient vehicle platoon control design methods







Design and Control Advances in Robotics


Book Description

Robotics plays a pivotal role in many domains such as industry and medicine. Robots allow for increased safety, production rates, accuracy, and quality; however, robots must be well designed and controlled to achieve the required performance. The design and control of robotics involve many varying disciplines, such as mechanical engineering, electronics, and automation, and must be further studied to ensure the technology is utilized appropriately. Design and Control Advances in Robotics considers the most recent applications and design advances in robotics and highlights the latest developments and applications within the field of robotics. Covering key topics such as deep learning, machine learning, programming, automation, and control advances, this reference work is ideal for engineers, computer scientists, industry professionals, academicians, practitioners, scholars, researchers, instructors, and students.




Communications and Networking


Book Description

The two-volume set LNICST 209-210 constitutes the post-conference proceedings of the 11th EAI International Conference on Communications and Networking, ChinaCom 2016, held in Chongqing, China, in September 2016. The total of 107 contributions presented in these volumes are carefully reviewed and selected from 181 submissions. The book is organized in topical sections on MAC schemes, traffic algorithms and routing algorithms, security, coding schemes, relay systems, optical systems and networks, signal detection and estimation, energy harvesting systems, resource allocation schemes, network architecture and SDM, heterogeneous networks, IoT (Internet of Things), hardware design and implementation, mobility management, SDN and clouds, navigation, tracking and localization, future mobile networks.




Control in Transportation Systems


Book Description

Control in Transportation Systems covers the proceedings of the Fourth International Federation of Automatic Control (IFAC)/International Federation for Information Processing (IFIP)/International Federation of Operational Research Societies (IFORS) Conference on Control in Transportation Systems. The book discusses papers that tackle applications, methodologies, and control problems of surface transportation systems. This text covers topics such as operation of ground transportation systems; availability and safety; and the impact of modeling on the operation of transportation systems. This selection also discusses self-tuning control of multilocomotive-powered long freight trains; fuzzy control for automatic train operation system; and energy optimal control in transportation systems. This book will be of great use to engineers especially those who specialize with transport systems.




Connected Vehicular Systems


Book Description

Framework for the analysis and design of connected vehicle systems, featuring numerous simulations, experimental studies, and problem-solving approaches Connected Vehicular Systems synthesizes the research advances of the past decade to provide readers with practical tools to analyze and design all aspects of connected autonomous vehicle systems, addressing a series of major issues and challenges in autonomous connected vehicles and transportation systems, such as sensing, communication, control design and command actuating. The text provides direct methodologies for solving important problems such as speed planning, cooperative adaptive cruise control, platooning, and string traffic flow stability, with numerous simulations and experimental studies with detailed skills for implementing algorithms and parameter settings. To help the reader better understand and implement the content, the text includes a variety of worked examples throughout, including those related to car following, vehicular platooning problem, string stability, cooperative adaptive cruise control, and vehicular communications. Written by two highly qualified academics with significant experience in the field, Connected Vehicular Systems includes information on: Varying communication ranges, interruptions, and topologies, along with controls for event-triggered communication Fault-tolerant and adaptive fault-tolerant controls with actuator saturation, input quantization, and dead-zone nonlinearity Prescribed performance concurrent controls, adaptive sliding mode controls, and speed planning for various scenarios, such as to reduce inter-vehicle spacing Control paradigms aimed at relaxing communications constraints and optimizing system performance Detailed algorithms and parameter settings that readers can implement in their own work to drive progress in the field Connected Vehicular Systems is an essential resource on the subject for mechanical and automotive engineers and researchers involved with the design and development of self-driving cars and intelligent transportation systems, along with graduate students in courses that cover vehicle controls within the context of control systems or vehicular systems engineering.




Vehicular Networking


Book Description

Learn about the basics and the future of vehicular networking research with this essential guide to in- and inter-vehicle communication.




Predictive Cruise Control for Road Vehicles Using Road and Traffic Information


Book Description

This book focuses on the design of a multi-criteria automated vehicle longitudinal control system as an enhancement of the adaptive cruise control system. It analyses the effects of various parameters on the average traffic speed and the traction force of the vehicles in mixed traffic from a macroscopic point of view, and also demonstrates why research and development in speed control and predictive cruise control is important. The book also summarises the main steps of the system’s robust control design, from the modelling to its synthesis, and discusses both the theoretical background and the practical computation method of the control invariant sets. The book presents the analysis and verification of the system both in a simulation environment and under real-world conditions. By including the systematic design of the predictive cruise control using road and traffic information, it shows how optimization criteria can lead to multiobjective solutions, and the advanced optimization and control design methods required. The book focuses on a particular method by which the unfavourable effect of the traffic flow consideration can be reduced. It also includes simulation examples in which the speed design is performed, while the analysis is carried out in simulation and visualization environments. This book is a valuable reference for researchers and control engineers working on traffic control, vehicle control and control theory. It is also of interest to students and academics as it provides an overview of the strong interaction between the traffic flow and an individual vehicle cruising from both a microscopic and a macroscopic point of view.




Computing, Communication and Signal Processing


Book Description

This book highlights cutting-edge research on various aspects of human–computer interaction (HCI). It includes selected research papers presented at the Third International Conference on Computing, Communication and Signal Processing (ICCASP 2018), organized by Dr. Babasaheb Ambedkar Technological University in Lonere-Raigad, India on January 26–27, 2018. It covers pioneering topics in the field of computer, electrical, and electronics engineering, e.g. signal and image processing, RF and microwave engineering, and emerging technologies such as IoT, cloud computing, HCI, and green computing. As such, the book offers a valuable guide for all scientists, engineers and research students in the areas of engineering and technology.




Advanced Vehicle Control


Book Description

The AVEC symposium is a leading international conference in the fields of vehicle dynamics and advanced vehicle control, bringing together scientists and engineers from academia and automotive industry. The first symposium was held in 1992 in Yokohama, Japan. Since then, biennial AVEC symposia have been established internationally and have considerably contributed to the progress of technology in automotive research and development. In 2016 the 13th International Symposium on Advanced Vehicle Control (AVEC’16) was held in Munich, Germany, from 13th to 16th of September 2016. The symposium was hosted by the Munich University of Applied Sciences. AVEC’16 puts a special focus on automatic driving, autonomous driving functions and driver assist systems, integrated control of interacting control systems, controlled suspension systems, active wheel torque distribution, and vehicle state and parameter estimation. 132 papers were presented at the symposium and are published in these proceedings as full paper contributions. The papers review the latest research developments and practical applications in highly relevant areas of vehicle control, and may serve as a reference for researchers and engineers.