SystemVerilog For Design


Book Description

SystemVerilog is a rich set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language (Verilog HDL). These extensions address two major aspects of HDL based design. First, modeling very large designs with concise, accurate, and intuitive code. Second, writing high-level test programs to efficiently and effectively verify these large designs. This book, SystemVerilog for Design, addresses the first aspect of the SystemVerilog extensions to Verilog. Important modeling features are presented, such as two-state data types, enumerated types, user-defined types, structures, unions, and interfaces. Emphasis is placed on the proper usage of these enhancements for simulation and synthesis. A companion to this book, SystemVerilog for Verification, covers the second aspect of SystemVerilog.




Computer Principles and Design in Verilog HDL


Book Description

Uses Verilog HDL to illustrate computer architecture and microprocessor design, allowing readers to readily simulate and adjust the operation of each design, and thus build industrially relevant skills Introduces the computer principles, computer design, and how to use Verilog HDL (Hardware Description Language) to implement the design Provides the skills for designing processor/arithmetic/cpu chips, including the unique application of Verilog HDL material for CPU (central processing unit) implementation Despite the many books on Verilog and computer architecture and microprocessor design, few, if any, use Verilog as a key tool in helping a student to understand these design techniques A companion website includes color figures, Verilog HDL codes, extra test benches not found in the book, and PDFs of the figures and simulation waveforms for instructors




SystemVerilog for Verification


Book Description

Based on the highly successful second edition, this extended edition of SystemVerilog for Verification: A Guide to Learning the Testbench Language Features teaches all verification features of the SystemVerilog language, providing hundreds of examples to clearly explain the concepts and basic fundamentals. It contains materials for both the full-time verification engineer and the student learning this valuable skill. In the third edition, authors Chris Spear and Greg Tumbush start with how to verify a design, and then use that context to demonstrate the language features, including the advantages and disadvantages of different styles, allowing readers to choose between alternatives. This textbook contains end-of-chapter exercises designed to enhance students’ understanding of the material. Other features of this revision include: New sections on static variables, print specifiers, and DPI from the 2009 IEEE language standard Descriptions of UVM features such as factories, the test registry, and the configuration database Expanded code samples and explanations Numerous samples that have been tested on the major SystemVerilog simulators SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, Third Edition is suitable for use in a one-semester SystemVerilog course on SystemVerilog at the undergraduate or graduate level. Many of the improvements to this new edition were compiled through feedback provided from hundreds of readers.




Verilog Digital System Design : Register Transfer Level Synthesis, Testbench, and Verification


Book Description

This rigorous text shows electronics designers and students how to deploy Verilog in sophisticated digital systems design.The Second Edition is completely updated -- along with the many worked examples -- for Verilog 2001, new synthesis standards and coverage of the new OVI verification library.




Digital Logic


Book Description

DIGITAL LOGIC




The Complete Verilog Book


Book Description

The Verilog hardware description language (HDL) provides the ability to describe digital and analog systems. This ability spans the range from descriptions that express conceptual and architectural design to detailed descriptions of implementations in gates and transistors. Verilog was developed originally at Gateway Design Automation Corporation during the mid-eighties. Tools to verify designs expressed in Verilog were implemented at the same time and marketed. Now Verilog is an open standard of IEEE with the number 1364. Verilog HDL is now used universally for digital designs in ASIC, FPGA, microprocessor, DSP and many other kinds of design-centers and is supported by most of the EDA companies. The research and education that is conducted in many universities is also using Verilog. This book introduces the Verilog hardware description language and describes it in a comprehensive manner. Verilog HDL was originally developed and specified with the intent of use with a simulator. Semantics of the language had not been fully described until now. In this book, each feature of the language is described using semantic introduction, syntax and examples. Chapter 4 leads to the full semantics of the language by providing definitions of terms, and explaining data structures and algorithms. The book is written with the approach that Verilog is not only a simulation or synthesis language, or a formal method of describing design, but a complete language addressing all of these aspects. This book covers many aspects of Verilog HDL that are essential parts of any design process.




Design Through Verilog HDL


Book Description

A comprehensive resource on Verilog HDL for beginners and experts Large and complicated digital circuits can be incorporated into hardware by using Verilog, a hardware description language (HDL). A designer aspiring to master this versatile language must first become familiar with its constructs, practice their use in real applications, and apply them in combinations in order to be successful. Design Through Verilog HDL affords novices the opportunity to perform all of these tasks, while also offering seasoned professionals a comprehensive resource on this dynamic tool. Describing a design using Verilog is only half the story: writing test-benches, testing a design for all its desired functions, and how identifying and removing the faults remain significant challenges. Design Through Verilog HDL addresses each of these issues concisely and effectively. The authors discuss constructs through illustrative examples that are tested with popular simulation packages, ensuring the subject matter remains practically relevant. Other important topics covered include: Primitives Gate and Net delays Buffers CMOS switches State machine design Further, the authors focus on illuminating the differences between gate level, data flow, and behavioral styles of Verilog, a critical distinction for designers. The book's final chapters deal with advanced topics such as timescales, parameters and related constructs, queues, and switch level design. Each chapter concludes with exercises that both ensure readers have mastered the present material and stimulate readers to explore avenues of their own choosing. Written and assembled in a paced, logical manner, Design Through Verilog HDL provides professionals, graduate students, and advanced undergraduates with a one-of-a-kind resource.




Fundamentals of Digital Logic with Verilog Design


Book Description

Fundamentals of Digital Logic With Verilog Designteaches the basic design techniques for logic circuits. It emphasizes the synthesis of circuits and explains how circuits are implemented in real chips. Fundamental concepts are illustrated by using small examples. Use of CAD software is well integrated into the book. A CD-ROM that contains Altera's Quartus CAD software comes free with every copy of the text. The CAD software provides automatic mapping of a design written in Verilog into Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs). Students will be able to try, firsthand, the book's Verilog examples (over 140) and homework problems. Engineers use Quartus CAD for designing, simulating, testing and implementing logic circuits. The version included with this text supports all major features of the commercial product and comes with a compiler for the IEEE standard Verilog language. Students will be able to: enter a design into the CAD system compile the design into a selected device simulate the functionality and timing of the resulting circuit implement the designs in actual devices (using the school's laboratory facilities) Verilog is a complex language, so it is introduced gradually in the book. Each Verilog feature is presented as it becomes pertinent for the circuits being discussed. To teach the student to use the Quartus CAD, the book includes three tutorials.




Digital Systems


Book Description

This textbook for a one-semester course in Digital Systems Design describes the basic methods used to develop “traditional” Digital Systems, based on the use of logic gates and flip flops, as well as more advanced techniques that enable the design of very large circuits, based on Hardware Description Languages and Synthesis tools. It was originally designed to accompany a MOOC (Massive Open Online Course) created at the Autonomous University of Barcelona (UAB), currently available on the Coursera platform. Readers will learn what a digital system is and how it can be developed, preparing them for steps toward other technical disciplines, such as Computer Architecture, Robotics, Bionics, Avionics and others. In particular, students will learn to design digital systems of medium complexity, describe digital systems using high level hardware description languages, and understand the operation of computers at their most basic level. All concepts introduced are reinforced by plentiful illustrations, examples, exercises, and applications. For example, as an applied example of the design techniques presented, the authors demonstrate the synthesis of a simple processor, leaving the student in a position to enter the world of Computer Architecture and Embedded Systems.