Verilog Designer's Library


Book Description

Ready-to-use building blocks for integrated circuit design. Why start coding from scratch when you can work from this library of pre-tested routines, created by an HDL expert? There are plenty of introductory texts to describe the basics of Verilog, but Verilog Designer's Library is the only book that offers real, reusable routines that you can put to work right away. Verilog Designer's Library organizes Verilog routines according to functionality, making it easy to locate the material you need. Each function is described by a behavioral model to use for simulation, followed by the RTL code you'll use to synthesize the gate-level implementation. Extensive test code is included for each function, to assist you with your own verification efforts. Coverage includes: Essential Verilog coding techniques Basic building blocks of successful routines State machines and memories Practical debugging guidelines Although Verilog Designer's Library assumes a basic familiarity with Verilog structure and syntax, it does not require a background in programming. Beginners can work through the book in sequence to develop their skills, while experienced Verilog users can go directly to the routines they need. Hardware designers, systems analysts, VARs, OEMs, software developers, and system integrators will find it an ideal sourcebook on all aspects of Verilog development.




The Designer’s Guide to Verilog-AMS


Book Description

The Verilog Hardware Description Language (Verilog-HDL) has long been the most popular language for describing complex digital hardware. It started life as a prop- etary language but was donated by Cadence Design Systems to the design community to serve as the basis of an open standard. That standard was formalized in 1995 by the IEEE in standard 1364-1995. About that same time a group named Analog Verilog International formed with the intent of proposing extensions to Verilog to support analog and mixed-signal simulation. The first fruits of the labor of that group became available in 1996 when the language definition of Verilog-A was released. Verilog-A was not intended to work directly with Verilog-HDL. Rather it was a language with Similar syntax and related semantics that was intended to model analog systems and be compatible with SPICE-class circuit simulation engines. The first implementation of Verilog-A soon followed: a version from Cadence that ran on their Spectre circuit simulator. As more implementations of Verilog-A became available, the group defining the a- log and mixed-signal extensions to Verilog continued their work, releasing the defi- tion of Verilog-AMS in 2000. Verilog-AMS combines both Verilog-HDL and Verilog-A, and adds additional mixed-signal constructs, providing a hardware description language suitable for analog, digital, and mixed-signal systems. Again, Cadence was first to release an implementation of this new language, in a product named AMS Designer that combines their Verilog and Spectre simulation engines.




Computer Principles and Design in Verilog HDL


Book Description

Uses Verilog HDL to illustrate computer architecture and microprocessor design, allowing readers to readily simulate and adjust the operation of each design, and thus build industrially relevant skills Introduces the computer principles, computer design, and how to use Verilog HDL (Hardware Description Language) to implement the design Provides the skills for designing processor/arithmetic/cpu chips, including the unique application of Verilog HDL material for CPU (central processing unit) implementation Despite the many books on Verilog and computer architecture and microprocessor design, few, if any, use Verilog as a key tool in helping a student to understand these design techniques A companion website includes color figures, Verilog HDL codes, extra test benches not found in the book, and PDFs of the figures and simulation waveforms for instructors




Design Through Verilog HDL


Book Description

A comprehensive resource on Verilog HDL for beginners and experts Large and complicated digital circuits can be incorporated into hardware by using Verilog, a hardware description language (HDL). A designer aspiring to master this versatile language must first become familiar with its constructs, practice their use in real applications, and apply them in combinations in order to be successful. Design Through Verilog HDL affords novices the opportunity to perform all of these tasks, while also offering seasoned professionals a comprehensive resource on this dynamic tool. Describing a design using Verilog is only half the story: writing test-benches, testing a design for all its desired functions, and how identifying and removing the faults remain significant challenges. Design Through Verilog HDL addresses each of these issues concisely and effectively. The authors discuss constructs through illustrative examples that are tested with popular simulation packages, ensuring the subject matter remains practically relevant. Other important topics covered include: Primitives Gate and Net delays Buffers CMOS switches State machine design Further, the authors focus on illuminating the differences between gate level, data flow, and behavioral styles of Verilog, a critical distinction for designers. The book's final chapters deal with advanced topics such as timescales, parameters and related constructs, queues, and switch level design. Each chapter concludes with exercises that both ensure readers have mastered the present material and stimulate readers to explore avenues of their own choosing. Written and assembled in a paced, logical manner, Design Through Verilog HDL provides professionals, graduate students, and advanced undergraduates with a one-of-a-kind resource.




Advanced Digital Design with the Verilog HDL


Book Description

This title builds on the student's background from a first course in logic design and focuses on developing, verifying, and synthesizing designs of digital circuits. The Verilog language is introduced in an integrated, but selective manner, only as needed to support design examples.




Digital VLSI Design with Verilog


Book Description

Verilog and its usage has come a long way since its original invention in the mid-80s by Phil Moorby. At the time the average design size was around ten thousand gates, and simulation to validate the design was its primary usage. But between then and now designs have increased dramatically in size, and automatic logic synthesis from RTL has become the standard design ?ow for most design. Indeed, the language has evolved and been re-standardized too. Overtheyears,manybookshavebeenwrittenaboutVerilog.Myown,coauthored with Phil Moorby, had the goal of de?ning the language and its usage, providing - amples along the way. It has been updated with ?ve new editions as the language and its usage evolved. However this new book takes a very different and unique view; that of the designer. John Michael Williams has a long history of working and teaching in the ?eld of IC and ASIC design. He brings an indepth presentation of Verilog and how to use it with logic synthesis tools; no other Verilog book has dealt with this topic as deeply as he has. If you need to learn Verilog and get up to speed quickly to use it for synthesis, this book is for you. It is sectioned around a set of lessons including presentation and explanation of new concepts and approaches to design, along with lab sessions.




Digital Logic Design Using Verilog


Book Description

This book is designed to serve as a hands-on professional reference with additional utility as a textbook for upper undergraduate and some graduate courses in digital logic design. This book is organized in such a way that that it can describe a number of RTL design scenarios, from simple to complex. The book constructs the logic design story from the fundamentals of logic design to advanced RTL design concepts. Keeping in view the importance of miniaturization today, the book gives practical information on the issues with ASIC RTL design and how to overcome these concerns. It clearly explains how to write an efficient RTL code and how to improve design performance. The book also describes advanced RTL design concepts such as low-power design, multiple clock-domain design, and SOC-based design. The practical orientation of the book makes it ideal for training programs for practicing design engineers and for short-term vocational programs. The contents of the book will also make it a useful read for students and hobbyists.




The Verilog® Hardware Description Language


Book Description

XV From the Old to the New xvii Acknowledgments xx| Verilog A Tutorial Introduction Getting Started 2 A Structural Description 2 Simulating the binaryToESeg Driver 4 Creating Ports For the Module 7 Creating a Testbench For a Module 8 Behavioral Modeling of Combinational Circuits 11 Procedural Models 12 Rules for Synthesizing Combinational Circuits 13 Procedural Modeling of Clocked Sequential Circuits 14 Modeling Finite State Machines 15 Rules for Synthesizing Sequential Systems 18 Non-Blocking Assignment ("




Verilog Digital System Design


Book Description

Annotation A much-needed, step-by-step tutorial to designing with Verilog--one of the most popular hardware description languages Each chapter features in-depth examples of Verilog coding, culminating at the end of the book in a fully designed central processing unit (CPU) CD-ROM featuring coded Verilog design examples A first-rate resource for digital designers, computer designer engineers, electrical engineers, and students.




The VLSI Handbook


Book Description

For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.