Vertical Coupling and Variability in the Tropical Atmosphere/Ionosphere System


Book Description

The main objective of this research was to understand the processes that dynamically couple the troposphere at equatorial tropical latitudes with the overlying thermosphere-ionosphere. and identify those aspects of ionospheric variability which may be directly attributable to these processes. Using a combination of data analyses and numerical simulations, a new understanding of the excitation mechanisms, propagation characteristics, and lower thermosphere perturbations relating to tropospherically-excited Kelvin waves and nonmigrating tides has been developed. In addition. an analyses of ionospheric data was completed that provides an estimate of the "meteorological" contributions to ionospheric space weather.
















Solar and Space Physics


Book Description

In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.




Middle Atmosphere


Book Description

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.







Dynamics of the Tropical Atmosphere and Oceans


Book Description

This book presents a unique and comprehensive view of the fundamental dynamical and thermodynamic principles underlying the large circulations of the coupled ocean-atmosphere system Dynamics of The Tropical Atmosphere and Oceans provides a detailed description of macroscale tropical circulation systems such as the monsoon, the Hadley and Walker Circulations, El Niño, and the tropical ocean warm pool. These macroscale circulations interact with a myriad of higher frequency systems, ranging from convective cloud systems to migrating equatorial waves that attend the low-frequency background flow. Towards understanding and predicting these circulation systems. A comprehensive overview of the dynamics and thermodynamics of large-scale tropical atmosphere and oceans is presented using both a “reductionist” and “holistic” perspectives of the coupled tropical system. The reductionist perspective provides a detailed description of the individual elements of the ocean and atmospheric circulations. The physical nature of each component of the tropical circulation such as the Hadley and Walker circulations, the monsoon, the incursion of extratropical phenomena into the tropics, precipitation distributions, equatorial waves and disturbances described in detail. The holistic perspective provides a physical description of how the collection of the individual components produces the observed tropical weather and climate. How the collective tropical processes determine the tropical circulation and their role in global weather and climate is provided in a series of overlapping theoretical and modelling constructs. The structure of the book follows a graduated framework. Following a detailed description of tropical phenomenology, the reader is introduced to dynamical and thermodynamical constraints that guide the planetary climate and establish a critical role for the tropics. Equatorial wave theory is developed for simple and complex background flows, including the critical role played by moist processes. The manner in which the tropics and the extratropics interact is then described, followed by a discussion of the physics behind the subtropical and near-equatorial precipitation including arid regions. The El Niño phenomena and the monsoon circulations are discussed, including their covariance and predictability. Finally, the changing structure of the tropics is discussed in terms of the extent of the tropical ocean warm pool and its relationship to the intensity of global convection and climate change. Dynamics of the Tropical Atmosphere and Oceans is aimed at advanced undergraduate and early career graduate students. It also serves as an excellent general reference book for scientists interested in tropical circulations and their relationship with the broader climate system.