Solar and Space Physics


Book Description

In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.




Middle Atmosphere


Book Description

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.




Aeronomy of the Earth's Atmosphere and Ionosphere


Book Description

This book is a multi-author treatise on the most outstanding research problems in the field of the aeronomy of the Earth’s atmosphere and ionosphere, encompassing the science covered by Division II of the International Association of Geomagnetism and Aeronomy (IAGA). It contains several review articles and detailed papers by leading scientists in the field. The book is organized in five parts: 1) Mesosphere-Lower Thermosphere Dynamics and Chemistry; 2) Vertical Coupling by Upward Propagating Waves; 3) Ionospheric Electrodynamics and Structuring; 4) Thermosphere- Ionosphere Coupling, Dynamics and Trends and 5) Ionosphere-Thermosphere Disturbances and Modeling. The book consolidates the progress achieved in the field in recent years and it serves as a useful reference for graduate students as well as experienced researchers.




Space Physics and Aeronomy, Upper Atmosphere Dynamics and Energetics


Book Description

A comprehensive overview of the structure and variability of the upper atmosphere Earth's upper atmosphere is an open system that is strongly influenced by energy and momentum inputs from both above and below. New observation and modeing techniques have provided insights into dynamics, energetics, and chemical processes in the upper atmosphere. Upper Atmosphere Dynamics and Energetics presents an overview of key research advances in upper atmospheric physics, and measurement and modeling techniques, along with remaining challenges for understanding the state and variability of the upper atmospheric system. Volume highlights include: Insights into the interconnections between different areas of upper atmospheric science Appreciation of the dynamics and complexity of the global upper atmospheric system Techniques for observing and measuring the upper atmosphere Responses of the upper atmosphere to external drivers The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief




Space Physics and Aeronomy, Ionosphere Dynamics and Applications


Book Description

A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth’s upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities. Ionosphere Dynamics and Applications provides a comprehensive overview of historic developments, recent advances, and future directions in ionospheric research. Volume highlights include: Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief




Pre-Earthquake Processes


Book Description

Pre-Earthquake signals are advanced warnings of a larger seismic event. A better understanding of these processes can help to predict the characteristics of the subsequent mainshock. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies presents the latest research on earthquake forecasting and prediction based on observations and physical modeling in China, Greece, Italy, France, Japan, Russia, Taiwan, and the United States. Volume highlights include: Describes the earthquake processes and the observed physical signals that precede them Explores the relationship between pre-earthquake activity and the characteristics of subsequent seismic events Encompasses physical, atmospheric, geochemical, and historical characteristics of pre-earthquakes Illustrates thermal infrared, seismo–ionospheric, and other satellite and ground-based pre-earthquake anomalies Applies these multidisciplinary data to earthquake forecasting and prediction Written for seismologists, geophysicists, geochemists, physical scientists, students and others, Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies offers an essential resource for understanding the dynamics of pre-earthquake phenomena from an international and multidisciplinary perspective.




The Atmosphere and Climate of Mars


Book Description

This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.




Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System


Book Description

Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere. - Describes frontier science and major science around M-I-T coupling, allowing for foundational understanding of this emerging field in space physics - Reviews recent and key findings in the cutting-edge of the science - Discusses open questions and pathways for understanding how the field is evolving




Climate and Weather of the Sun-Earth System (CAWSES)


Book Description

CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some important research topics from the Sun to climate. Solar related processes are studied including the evolution of solar radiation with relevance to climate. Results regarding the influence of the Sun on the terrestrial atmosphere from the troposphere to the thermosphere are presented including stratospheric ozone, mesospheric ice clouds, geomagnetic effects, and their relevance to climate. Several chapters highlight the importance of coupling mechanisms within the atmosphere, covering transport mechanisms of photochemically active species, dynamical processes such as gravity waves, tides, and planetary waves, and feedback mechanisms between the thermal and dynamical structure of the atmosphere. Special attention is paid to climate signals in the middle and upper atmosphere and their significance relative to natural variability.