Vibration of Mechanical Systems


Book Description

This is a textbook for a first course in mechanical vibrations. There are many books in this area that try to include everything, thus they have become exhaustive compendiums, overwhelming for the undergraduate. In this book, all the basic concepts in mechanical vibrations are clearly identified and presented in a concise and simple manner with illustrative and practical examples. Vibration concepts include a review of selected topics in mechanics; a description of single-degree-of-freedom (SDOF) systems in terms of equivalent mass, equivalent stiffness, and equivalent damping; a unified treatment of various forced response problems (base excitation and rotating balance); an introduction to systems thinking, highlighting the fact that SDOF analysis is a building block for multi-degree-of-freedom (MDOF) and continuous system analyses via modal analysis; and a simple introduction to finite element analysis to connect continuous system and MDOF analyses. There are more than sixty exercise problems, and a complete solutions manual. The use of MATLAB® software is emphasized.




Random Vibration in Mechanical Systems


Book Description

Random Vibration in Mechanical Systems focuses on the fundamental facts and theories of random vibration in a form particularly applicable to mechanical engineers. The book first offers information on the characterization and transmission of random vibration. Discussions focus on the normal or Gaussian random process; excitation-response relations for stationary random processes; response of a single-degree-of-freedom system to stationary random excitation; wide-band and narrow-band random processes; and frequency decomposition of stationary random processes. The text then examines failure due to random vibration, including failure due to first excursion up to a certain level; fatigue failure due to a stationary narrow-band random stress process; failure due to an accumulation of damage; failure due to response remaining above a certain level for too great a fraction of the time; and failure mechanisms. The manuscript is a vital reference for mechanical engineers and researchers interested in random vibration in mechanical systems.




Mechanical Systems


Book Description

This essential textbook concerns analysis and control of engineering mechanisms, which includes almost any apparatus with moving parts used in daily life, from musical instruments to robots. A particular characteristic of this book is that it presents with considerable breadth and rigor both vibrations and controls. Many contemporary texts combine both of these topics in a single, one term course. This text supports the more favorable circumstance where the material is covered in a one year sequence contains enough material for a two semester sequence, but it can also be used in a single semester course combining two topics. “Mechanical Systems: A Unified Approach to Vibrations and Controls” presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text.




Vibrations and Waves in Continuous Mechanical Systems


Book Description

The subject of vibrations is of fundamental importance in engineering and technology. Discrete modelling is sufficient to understand the dynamics of many vibrating systems; however a large number of vibration phenomena are far more easily understood when modelled as continuous systems. The theory of vibrations in continuous systems is crucial to the understanding of engineering problems in areas as diverse as automotive brakes, overhead transmission lines, liquid filled tanks, ultrasonic testing or room acoustics. Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics. Presents dynamics and analysis techniques for a wide range of continuous systems including strings, bars, beams, membranes, plates, fluids and elastic bodies in one, two and three dimensions. Covers special topics such as the interaction of discrete and continuous systems, vibrations in translating media, and sound emission from vibrating surfaces, among others. Develops the reader’s understanding by progressing from very simple results to more complex analysis without skipping the key steps in the derivations. Offers a number of new topics and exercises that form essential steppingstones to the present level of research in the field. Includes exercises at the end of the chapters based on both the academic and practical experience of the authors. Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will be suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field.




Elements of Mechanical Vibration


Book Description

This is an entry level textbook to the subject of vibration of linear mechanical systems. All the topics prescribed by leading universities for study in undergraduate engineering courses are covered in the book in a graded manner. With minimum amount of m




Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems


Book Description

The exposition is self-contained. The first chapter presents all necessary results (with proofs) on the theory of matrices which are not included in a standard linear algebra course. The only prerequisite in addition to standard linear algebra is the theory of linear integral equations used in Chapter 5. The book is suitable for graduate students, research mathematicians and engineers interested in ordinary differential equations, integral equations, and theirapplications.




Random Vibrations


Book Description

The topic of Random Vibrations is the behavior of structural and mechanical systems when they are subjected to unpredictable, or random, vibrations. These vibrations may arise from natural phenomena such as earthquakes or wind, or from human-controlled causes such as the stresses placed on aircraft at takeoff and landing. Study and mastery of this topic enables engineers to design and maintain structures capable of withstanding random vibrations, thereby protecting human life. Random Vibrations will lead readers in a user-friendly fashion to a thorough understanding of vibrations of linear and nonlinear systems that undergo stochastic-random-excitation. Provides over 150 worked out example problems and, along with over 225 exercises, illustrates concepts with true-to-life engineering design problems Offers intuitive explanations of concepts within a context of mathematical rigor and relatively advanced analysis techniques. Essential for self-study by practicing engineers, and for instruction in the classroom.




Vibration of Discrete and Continuous Systems


Book Description

Mechanical engineering, an engineering discipline borne of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for information in con temporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concen tration. The names of the consulting editors are listed on the next page of this volume. The areas of concentration are: applied mechanics; bio mechanics; computational mechanics; dynamic systems and control; energetics; mechanics of materials; processing; thermal science; and tribology. Professor Marshek, the consulting editor for dynamic systems and control, and I are pleased to present the second edition of Vibration of Discrete and Continuous Systems by Professor Shabana. We note that this is the second of two volumes. The first deals with the theory of vibration.




Mechanical Vibrations and Condition Monitoring


Book Description

Mechanical Vibrations and Condition Monitoring presents a collection of data and insights on the study of mechanical vibrations for the predictive maintenance of machinery. Seven chapters cover the foundations of mechanical vibrations, spectrum analysis, instruments, causes and effects of vibration, alignment and balancing methods, practical cases, and guidelines for the implementation of a predictive maintenance program. Readers will be able to use the book to make predictive maintenance decisions based on vibration analysis. This title will be useful to senior engineers and technicians looking for practical solutions to predictive maintenance problems. However, the book will also be useful to technicians looking to ground maintenance observations and decisions in the vibratory behavior of machine components.




Mechanical Vibration


Book Description

Mechanical Vibration: Analysis, Uncertainties, and Control, Fourth Edition addresses the principles and application of vibration theory. Equations for modeling vibrating systems are explained, and MATLAB® is referenced as an analysis tool. The Fourth Edition adds more coverage of damping, new case studies, and development of the control aspects in vibration analysis. A MATLAB appendix has also been added to help students with computational analysis. This work includes example problems and explanatory figures, biographies of renowned contributors, and access to a website providing supplementary resources.