Vibration Problems in Structures


Book Description

Authors: Hugo Bachmann, Walter J. Ammann, Florian Deischl, Josef Eisenmann, Ingomar Floegl, Gerhard H. Hirsch, Günter K. Klein, Göran J. Lande, Oskar Mahrenholtz, Hans G. Natke, Hans Nussbaumer, Anthony J. Pretlove, Johann H. Rainer, Ernst-Ulrich Saemann, Lorenz Steinbeisser. Large structures such as factories, gymnasia, concert halls, bridges, towers, masts and chimneys can be detrimentally affected by vibrations. These vibrations can cause either serviceability problems, severely hampering the user's comfort, or safety problems. The aim of this book is to provide structural and civil engineers working in construction and environmental engineering with practical guidelines for counteracting vibration problems. Dynamic actions are considered from the following sources of vibration: - human body motions, - rotating, oscillating and impacting machines, - wind flow, - road traffic, railway traffic and construction work. The main section of the book presents tools that aid in decision-making and in deriving simple solutions to cases of frequently occurring "normal" vibration problems. Complexer problems and more advanced solutions are also considered. In all cases these guidelines should enable the engineer to decide on appropriate solutions expeditiously. The appendices of the book contain fundamentals essential to the main chapters.




Vibration problems in structures practical guidelines


Book Description







Vibration Problems in Structures


Book Description




Stability and Optimization of Flexible Space Structures


Book Description

The aim of this book is to present up-to-date methodologies in the analysis and optimization of the elastic stability of lightweight statically determinate, and in- determinate, space structures made of flexible members which are highly stiff when loaded centrally at the nodes. These are flat and curved space pin- connected open or enveloped lattices and reticulated shells which, due to their high loadbearing capacity to weight ratios, are gaining in importance in aerospace and other fields. They are utilized, for example, in space stations, as support structures for large radio-telescopes and for other equipment on earth and in outer space, as roof structures for the coverage and enclosure of large areas on earth and as underwater shell-type structures enveloped by a cover-shell capable of withstanding high hydrostatic pressures. • Space structures of this type are generally subjected to considerable internal axial loads in the flexible members and they fail through the loss of global statical stability, usually precipitated by the intrinsic small imperfections at finite near-critical elastic deformations - and not primarily by the the break-down of the material of which they are made, as is the case in conventional systems. Thus, the criterion in the design of such structures calls for eliminating or isolating the onset of the elastic dynamic collapse thereby increasing their safe stability limit. • Standard finite element methods, as they are employed by most users today, are totally inadequate for such analyses since they do not account for the choice of the branching paths in the loading process of the structure nor for the existence of the relevant collapse modes. • These aspects are novel and they are presented here for the first time in comprehensive book form.




Handbook of Noise and Vibration Control


Book Description

Two of the most acclaimed reference works in the area of acoustics in recent years have been our Encyclopedia of Acoustics, 4 Volume set and the Handbook of Acoustics spin-off. These works, edited by Malcolm Crocker, positioned Wiley as a major player in the acoustics reference market. With our recently published revision of Beranek & Ver's Noise and Vibration Control Engineering, Wiley is a highly respected name in the acoustics business. Crocker's new handbook covers an area of great importance to engineers and designers. Noise and vibration control is one largest areas of application of the acoustics topics covered in the successful encyclopedia and handbook. It is also an area that has been under-published in recent years. Crocker has positioned this reference to cover the gamut of topics while focusing more on the applications to industrial needs. In this way the book will become the best single source of need-to-know information for the professional markets.




Vibration of Structures and Machines


Book Description

The aim of the present book is to address practical aspects of nonlinear vibration analysis. It presents cases rarely discussed in the existing literature on vibration - such as rotor dynamics, and torsional vibration of engines - which are problems of considerable interest for engineering researchers and practical engineers. The book can be used not only as a reference but also as material for graduate students at Engineering departments, as it contains problems and solutions for each chapter.







Applied Structural and Mechanical Vibrations


Book Description

The fundamental concepts, ideas and methods underlying all vibration phenomena are explained and illustrated in this book. The principles of classical linear vibration theory are brought together with vibration measurement, signal processing and random vibration for application to vibration problems in all areas of engineering. The book pays partic




The International Handbook of FRP Composites in Civil Engineering


Book Description

Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a wide range of civil infrastructure applications. These include everything from bridge decks, bridge strengthening and repairs, and seismic retrofit to marine waterfront structures and sustainable, energy-efficient housing. The International Handbook of FRP Composites in Civil Engineering brings together a wealth of information on advances in materials, techniques, practices, nondestructive testing, and structural health monitoring of FRP composites, specifically for civil infrastructure. With a focus on professional applications, the handbook supplies design guidelines and standards of practice from around the world. It also includes helpful design formulas, tables, and charts to provide immediate answers to common questions. Organized into seven parts, the handbook covers: FRP fundamentals, including history, codes and standards, manufacturing, materials, mechanics, and life-cycle costs Bridge deck applications and the critical topic of connection design for FRP structural members External reinforcement for rehabilitation, including the strengthening of reinforced concrete, masonry, wood, and metallic structures FRP composites for the reinforcement of concrete structures, including material characteristics, design procedures, and quality assurance–quality control (QA/QC) issues Hybrid FRP composite systems, with an emphasis on design, construction, QA/QC, and repair Quality control, quality assurance, and evaluation using nondestructive testing, and in-service monitoring using structural health monitoring of FRP composites, including smart composites that can actively sense and respond to the environment and internal states FRP-related books, journals, conference proceedings, organizations, and research sources Comprehensive yet concise, this is an invaluable reference for practicing engineers and construction professionals, as well as researchers and students. It offers ready-to-use information on how FRP composites can be more effectively utilized in new construction, repair and reconstruction, and architectural engineering.