Vibrations at Surfaces


Book Description

This volume contains most of the invited and contributed papers presented at the second international conference devoted to the general topic "Vibrations at Surfaces" and which took place from 10 to 12 September 1980 at the Facu1tes Notre-Dame de 1a Paix in Namur, Belgium. The conference was organized to review the large amount of information gathered in this field over the late seventies as a result of th~ rapid improvements and dissemination of surface spectroscopic technique such a electron energy loss, infrared and Raman surface spectroscopies. Much time was devoted to Raman spectroscopy of adsorbed mo1e 'cu1es. After several years of vivid debate over the causes of the observed large enhancement of Raman cross section, a clearer pic ture emerges from the papers presented here: the actual value of the enhancement factor does depend in a complicated manner on long range surface roughness, atomic-scale roughness and the dielectric properties of the substrate as well as on the electronic structure of the molecule in its adsorbed state. Less controversial are the results obtained with electron energy loss spectroscopy (EELS) and several sessions of the con ference were devoted to the approach. As witnessed by the growing number of laboratories using the technique, EELS is now a mature spectroscopic tool for the characterization and analysis of the chemisorption bond.




Electron Energy Loss Spectroscopy and Surface Vibrations


Book Description

Electron Energy Loss Spectroscopy and Surface Vibrations is devoted to electron energy loss spectroscopy as a probe of the crystal surface. Electrons with energy in the range of a few electron volts sample only a few atomic layers. As they approach or exit from the crystal, they interact with the vibrational modes of the crystal surface, or possibly with other elementary excitations localized there. The energy spectrum of electrons back-reflected from the surface is thus a rich source of information on its dynamics. The book opens with a detailed analysis of the physics that controls the operation of the monochromator, which is the core of the experimental apparatus. Separate chapters follow on the interaction of electrons with vibrational modes of the surface region and with other elementary excitations in the vicinity; the lattice dynamics of clean and adsorbate-covered surfaces, with emphasis on those features of particular relevance to surface vibrational spectroscopy; and selected applications vibration spectroscopy in surface physics and chemistry.




Preliminary Investigation of Self-excited Vibrations of Single Planing Surfaces


Book Description

A preliminary investigation was made of self-excited vibrations of single planing surfaces. A self-excited oscillation requiring freedom in rise but not in trim occurred with high aspect ratio (order of 10) of the wetted portion. This vibration could be controlled most successfully by methods (such as the use of dead rise) which limited the wetted aspect ratio.







Interaction of Atoms and Molecules with Solid Surfaces


Book Description

There is considerable interest, both fundamental and technological, in the way atoms and molecules interact with solid surfaces. Thus the description of heterogeneous catalysis and other surface reactions requires a detailed understand ing of molecule-surface interactions. The primary aim of this volume is to provide fairly broad coverage of atoms and molecules in interaction with a variety of solid surfaces at a level suitable for graduate students and research workers in condensed matter physics, chemical physics, and materials science. The book is intended for experimental workers with interests in basic theory and concepts and had its origins in a Spring College held at the International Centre for Theoretical Physics, Miramare, Trieste. Valuable background reading can be found in the graduate-Ievel introduction to the physics of solid surfaces by ZangwilI(1) and in the earlier works by Garcia Moliner and F1ores(2) and Somorjai.(3) For specifically molecule-surface interac tions, additional background can be found in Rhodin and Ertl(4) and March.(S) V. Bortolani N. H. March M. P. Tosi References 1. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge (1988). 2. F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge (1979). 3. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981). 4. T. N. Rhodin and G. Erd, The Nature of the Surface Chemical Bond, North-Holland, Amsterdam (1979). 5. N. H. March, Chemical Bonds outside Metal Surfaces, Plenum Press, New York (1986).




Vibration Utilization Engineering


Book Description

This book proposes “Vibration Utilization Engineering,” using harmful vibrations in many cases for energy harvesting. Scope of the book includes, but not limited to, linear and nonlinear system of vibrations, waves (sound wave and light wave), wave motion and energy utilization, the electric–magnetic oscillation utilization in engineering, the phenomena, patterns, and utilization of the vibrations in Nature and human social society. It is all based on the theory of vibration utilization technology and equipment technological process, linear and pseudo-linear vibration, nonlinear vibration. This new subject branch is closely associated with numerus applications in industrial or agricultural production, medical apparatus and equipment and daily life, etc. It could create significant economic and social benefits and provide significant values for society and excellent service for human life.




Surface and Interface Science, Volumes 1 and 2


Book Description

Covering interface science from a novel surface science perspective, this unique handbook offers a comprehensive overview of this burgeoning field. Eight topical volumes cover basic concepts and methods, elemental and composite surfaces, solid-gas, solid-liquid and inorganic biological interfaces, as well as applications of surface science in nanotechnology, materials science and molecular electronics. With its broad scope and clear structure, it is ideal as a reference for scientists in the field, as well as an introduction for newcomers.







Vibrational Dynamics Of Molecules


Book Description

Vibrational Dynamics of Molecules represents the definitive concise text on the cutting-edge field of vibrational molecular chemistry. The chapter contributors are a Who's Who of world leaders in the field. The editor, Joel Bowman, is widely considered as one of the founding fathers of theoretical reaction dynamics. The included topics span the field, from fundamental theory such as collocation methods and vibrational CI methods, to interesting applications such as astrochemistry, supramolecular systems and virtual computational spectroscopy. This is a useful reference for theoretical chemists, spectroscopists, physicists, undergraduate and graduate students, lecturers and software developers.