Vibrations of Elastic Plates


Book Description

This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.




An Introduction to the Mathematical Theory of Vibrations of Elastic Plates


Book Description

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices. Sample Chapter(s). Chapter 1: Elements of the Linear Theory of Elasticity (416 KB). Contents: Elements of the Linear Theory of Elasticity; Solutions of the Three-Dimensional Equations; Infinite Power Series of Two-Dimensional Equations; Zero-Order Approximation; First-Order Approximation; Intermediate Approximations. Readership: Researchers in mechanics, civil and mechanical engineering and applied mathematics.




Vibrations of Elastic Systems


Book Description

This work presents a unified approach to the vibrations of elastic systems as applied to MEMS devices, mechanical components, and civil structures. Applications include atomic force microscopes, energy harvesters, and carbon nanotubes and consider such complicating effects as squeeze film damping, viscous fluid loading, in-plane forces, and proof mass interactions with their elastic supports. These effects are analyzed as single degree-of-freedom models and as more realistic elastic structures. The governing equations and boundary conditions for beams, plates, and shells with interior and boundary attachments are derived by applying variational calculus to an expression describing the energy of the system. The advantages of this approach regarding the generation of orthogonal functions and the Rayleigh-Ritz method are demonstrated. A large number of graphs and tables are given to show the impact of various factors on the systems’ natural frequencies, mode shapes, and responses.




An Introduction to the Mathematical Theory of Vibrations of Elastic Plates


Book Description

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices.







Vibrations of Shells and Plates


Book Description

With increasingly sophisticated structures involved in modern engineering, knowledge of the complex vibration behavior of plates, shells, curved membranes, rings, and other complex structures is essential for today‘s engineering students, since the behavior is fundamentally different than that of simple structures such as rods and beams. Now in its




Vibration of Laminated Shells and Plates


Book Description

Vibrations drive many engineering designs in today's engineering environment. There has been an enormous amount of research into this area of research over the last decade. This book documents some of the latest research in the field of vibration of composite shells and plates filling a much-needed gap in the market. Laminated composite shells have many engineering applications including aerospace, mechanical, marine and automotive engineering. This book makes an ideal reference for researchers and practicing engineers alike. - The first book of its kind - Documents 10 years of research in the field of composite shells - Many Engineering applications




Formulas for Dynamics, Acoustics and Vibration


Book Description

With Over 60 tables, most with graphic illustration, and over 1000 formulas, Formulas for Dynamics, Acoustics, and Vibration will provide an invaluable time-saving source of concise solutions for mechanical, civil, nuclear, petrochemical and aerospace engineers and designers. Marine engineers and service engineers will also find it useful for diagnosing their machines that can slosh, rattle, whistle, vibrate, and crack under dynamic loads.




Vibration of Functionally Graded Beams and Plates


Book Description

Vibration of Functionally Graded Beams and Plates uses numerically efficient computational techniques to analyze vibration problems associated with FG beams and plates. Introductory material on FG materials and structural members, as well as a range of vibration and shear deformation theories are discussed, providing a valuable summary of these broader themes. The latest research and analysis of vibration in FG materials is presented in an application-oriented manner, linking the research to its importance in fields such as aerospace, nuclear power, and automotive engineering. The book also features research on the complicating effects of thermal environments, piezoelectricity, and elastic foundations. The innovative computational procedures and simulation results are shown in full throughout, providing a uniquely valuable resource for users of numerical modeling software. This book is essential reading for any researcher or practitioner interested in FG materials, or the design of technology for the nuclear power, aerospace, and automotive industries. - Defines the basic preliminaries of vibration and FG materials - Introduces historical background and recent developments in functionally graded materials with references for further reading - Shows computational procedures with simulation results - Includes many easy to understand example problems - Presents various analytical and numerical procedures for each solution




Poisson Theory of Elastic Plates


Book Description

This groundbreaking book resolves the main lacuna in Kirchhoff theory of bending of plates in the Poisson-Kirchhoff boundary conditions paradox through the introduction of auxiliary problem governing transverse stresses. The book highlights new primary bending problem which is formulated and analyzed by the application of developed Poisson theory. Analysis with prescribed transverse stresses along faces of the plate, neglected in most reported theories, is presented with an additional term in displacements. The book presents a systematic procedure for the analysis of unsymmetrical laminates. This volume will be a useful reference for students, practicing engineers as well as researchers in applied mechanics.