Viral Membrane Proteins: Structure, Function, and Drug Design


Book Description

In Viral Membrane Proteins: Structure, Function, and Drug Design, Wolfgang Fischer summarizes the current structural and functional knowledge of membrane proteins encoded by viruses. In addition, contributors to the book address questions about proteins as potential drug targets. The range of information covered includes signal proteins, ion channels, and fusion proteins. This book has a place in the libraries of researchers and scientists in a wide array of fields, including protein chemistry, molecular biophysics, pharmaceutical science and research, bioanotechnology, molecular biology, and biochemistry.




Viral Membrane Proteins: Structure, Function, and Drug Design


Book Description

In Viral Membrane Proteins: Structure, Function, and Drug Design, Wolfgang Fischer summarizes the current structural and functional knowledge of membrane proteins encoded by viruses. In addition, contributors to the book address questions about proteins as potential drug targets. The range of information covered includes signal proteins, ion channels, and fusion proteins. This book has a place in the libraries of researchers and scientists in a wide array of fields, including protein chemistry, molecular biophysics, pharmaceutical science and research, bioanotechnology, molecular biology, and biochemistry.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Human Herpesviruses


Book Description

This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.




Structure and Physics of Viruses


Book Description

This book contemplates the structure, dynamics and physics of virus particles: From the moment they come into existence by self-assembly from viral components produced in the infected cell, through their extracellular stage, until they recognise and infect a new host cell and cease to exist by losing their physical integrity to start a new infectious cycle. (Bio)physical techniques used to study the structure of virus particles and components, and some applications of structure-based studies of viruses are also contemplated. This book is aimed first at M.Sc. students, Ph.D. students and postdoctoral researchers with a university degree in biology, chemistry, physics or related scientific disciplines who share an interest or are actually working on viruses. We have aimed also at providing an updated account of many important concepts, techniques, studies and applications in structural and physical virology for established scientists working on viruses, irrespective of their physical, chemical or biological background and their field of expertise. We have not attempted to provide a collection of for-experts-only reviews focused mainly on the latest research in specific topics; we have not generally assumed that the reader knows all of the jargon and all but the most recent and advanced results in each topic dealt with in this book. In short, we have attempted to write a book basic enough to be useful to M.Sc and Ph.D. students, as well as advanced and current enough to be useful to senior scientists with an interest in Structural and/or Physical Virology.




Scientific Principles of Adipose Stem Cells


Book Description

Scientific Principles of Adipose Stem Cells provides readers with in-depth and expert knowledge on adipose stem cells, their developmental biologic origins, foundational research on ASC signaling mechanisms and immunomodulatory properties, and clinical insights into applications in regenerative medicine. Topics covered include basic adipose stem cell developmental biology and mechanisms of regulating self-renewal and activation in the stem cell niche, important methods for isolation and characterizing ASCs, and data on the impact on human demographics (age, sex, BMI) on ASC phenotype. A section devoted to ASC biology, ASCs for stem cell therapy and regenerative medicine, and ASCs in tissue engineering applications are also included. The book is written for scientists and clinicians who are broadly familiar with stem cells and basic cell biology principles and those seeking advanced information on adipose stem cells. - Coverage of basic adipose stem cell developmental biology (maturation process during embryogenesis) and mechanisms of regulating self-renewal and activation in the stem cell niche - Includes important methods for isolation and characterizing ASCs, as well as known data any impact of human demographics (age, sex, BMI) on ASC phenotype - An entire section dedicated to ASC biology, additional sections will be devoted to ASCs for stem cell therapy and regenerative medicine, as well as ASCs in tissue engineering applications




Structure and Function of Membrane Proteins


Book Description

This book examines detailed experimental and computational approaches for the analysis of many aspects vital to the understanding of membrane protein structure and function. Readers will receive guidance on the selection and use of methods for over-expression and purification, tools to characterize membrane proteins within different phospholipid bilayers, direction on functional studies, and approaches to determine the structures of membrane proteins. Detailed experimental steps for specific membrane proteins with critical notes allow the protocols to be modified to different systems. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of practical information and implementation advice that leads to excellent, reproducible results. Authoritative and up-to-date, Structure and Function Studies of Membrane Proteins serves as an ideal guide for biologists, biochemists, and biophysicists striving to further understand these essential proteins and their many biological roles.




Membrane Protein Crystallization


Book Description

This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.




Protein Crystallography in Drug Discovery, Volume 20


Book Description

The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.