Viral Nanoparticles


Book Description

This book overviews the applications of viral nanoparticles (VNPs) in areas ranging from materials science to biomedicine. It summarizes the many different VNP building blocks and describes chemistries that allow one to attach, entrap, or display functionalities on VNPs. The book outlines the strategies for the construction of 1-, 2-, and 3-D arrays, highlights the achievements in utilizing VNPs as tools for novel biosensors and nanoelectronic devices, and describes efforts in designing VNPs for biomedical applications, including their use as gene delivery vectors, novel vaccines, imaging modalities, and applications in targeted therapeutics.




Viruses and Nanotechnology


Book Description

Nanotechnology is a collective term describing a broad range of relatively novel topics. Scale is the main unifying theme, with nanotechnology being concerned with matter on the nanometer scale. A quintessential tenet of nanotechnology is the precise self-assembly of nanometer-sized components into ordered devices. Nanotechnology seeks to mimic what nature has achieved, with precision at the nanometer level down to the atomic level. Nanobiotechnology, a division of nanotechnology, involves the exploitation of biomaterials, devices or methodologies in the nanoscale. In recent years a set of b- molecules has been studied and utilized. Virus particles are natural nanomaterials and have recently received attention for their tremendous potential in this field. The extensive study of viruses as pathogens has yielded detailed knowledge about their biological, genetic, and physical properties. Bacterial viruses (bacte- ophages), plant and animal eukaryotic viruses, and viruses of archaea have all been characterized in this manner. The knowledge of their replicative cycles allows manipulation and tailoring of particles, relying on the principles of self-assembly in infected hosts to build the base materials. The atomic resolution of the virion structure reveals ways in which to tailor particles for higher-order functions and assemblies.




Nanobiotechnology in Diagnosis, Drug Delivery and Treatment


Book Description

Presents nanobiotechnology in drug delivery and disease management Featuring contributions from noted experts in the field, this book highlights recent advances in the nano-based drug delivery systems. It also covers the diagnosis and role of various nanomaterials in the management of infectious diseases and non-infectious disorders, such as cancers and other malignancies and their role in future medicine. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment starts by introducing how nanotechnology has revolutionized drug delivery, diagnosis, and treatments of diseases. It then focuses on the role of various nanocomposites in diagnosis, drug delivery, and treatment of diseases like cancer, Alzheimer's disease, diabetes, and many others. Next, it discusses the application of a variety of nanomaterials in the diagnosis and management of gastrointestinal tract disorders. The book explains the concept of nanotheranostics in detail and its role in effective monitoring of drug response, targeted drug delivery, enhanced drug accumulation in the target tissues, sustained as well as triggered release of drugs, and reduction in adverse effects. Other chapters cover aptamer-incorporated nanoparticle systems; magnetic nanoparticles; theranostics and vaccines; toxicological concerns of nanomaterials used in nanomedicine; and more. Provides a concise overview of state-of-the-art nanomaterials and their application like drug delivery in infectious diseases and non-infectious disorders Highlights recent advances in the nano-based drug delivery systems and role of various nanomaterials Introduces nano-based sensors which detect various pathogens Covers the use of nanodevices in diagnostics and theranostics Nanobiotechnology in Diagnosis, Drug Delivery and Treatment is an ideal book for researchers and scientists working in various disciplines such as microbiology, biotechnology, nanotechnology, pharmaceutical biotechnology, pharmacology, pharmaceutics, and nanomedicine.




Viral and Antiviral Nanomaterials


Book Description

This book summarizes the synthesis, properties, characterization, and application of viral and antiviral nanomaterials by using interdisciplinary subjects ranging from materials science to biomedical science. Viral and Antiviral Nanomaterials: Synthesis, Properties, Characterization, and Application highlights attainments in utilizing nanomaterials as powerful tools for the treatment of viral infections in plants, animals, and humans. It reviews the adopted strategies for designing viral and antiviral nanomaterials for medical applications, including cancer therapy and drug delivery. It also explains the different kinds of antiviral nanosized structures, their chemistries, and the attributes that enable them to be suitable targets for nanotherapeutics. The contributors have prepared the content in a comprehensive manner for readers to use their research findings to improve the healthcare of all living beings. FEATURES Reviews the novel tools for synthesis and characterization of nanomaterials as viral and antiviral agents Explores the different applications of currently available nanomaterials for the treatment of viral infections Investigates the role of antiviral nanodrugs in human and plant systems Addresses the activity of nanostructures in drug-delivery systems for cancer treatment Allows readers from various backgrounds to access the advanced research and practices across traditional frontiers Discusses viral nanomaterials as the viable future of antiviral drugs and nanovaccines in animals and humans This authoritative book is of exceptional relevance to postgraduate scholars, researchers, and scientists interested in nanomedicine, biomedical science, materials science, biopharmaceutical technology, microbiology, and virology to improve virus- and cancer-based therapeutic tools for animal and human welfare.




Harnessing the Power of Viruses


Book Description

Harnessing the Power of Viruses explores the application of scientific knowledge about viruses and their lives to solve practical challenges and further advance molecular sciences, medicine and agriculture. The book contains virus-based tools and approaches in the fields of: i) DNA manipulations in vitro and in vivo; ii) Protein expression and characterization; and iii) Virus- Host interactions as a platform for therapy and biocontrol are discussed. It steers away from traditional views of viruses and technology, focusing instead on viral molecules and molecular processes that enable science to better understand life and offer means for addressing complex biological phenomena that positively influence everyday life. The book is written at an intermediate level and is accessible to novices who are willing to acquire a basic level of understanding of key principles in molecular biology, but is also ideal for advanced readers interested in expanding their biological knowledge to include practical applications of molecular tools derived from viruses. - Explores virus-based tools and approaches in DNA manipulation, protein expression and characterization and virus-host interactions - Provides a dedicated focus on viral molecules and molecular processes that enable science to better understand life and address complex biological phenomena - Includes an overview of modern technologies in biology that were developed using viral components/elements and knowledge about viral processes




Multidisciplinary Science and Advanced Technologies


Book Description

"Multidisciplinary Science and Advanced Technologies form a vast and diverse class of the engineering science and research divisions. This book discusses novel design techniques and smart mechanisms, as well as innovations that might be utilized in the future. Scientific modification can control industrial-scale assembly, a process that ultimately provides specific material function, depending on electronic development for advancements. Furthermore, the combination of supramolecular multidisciplinary technologies allows for the exploration of application-based materials. Smart materials are vital for the in-depth analysis of various morphologies. This book is an international forum for comprehensive soft-condensed matter physics, nanoscience principles, nanotechnology tools, and nanotechnology applications in the environmental, energy, and electronics sector, including a discussion of ethical issues in these fields. This book reviews the applications and market potential of a variety of media, including mirror, glazing, and display products, such as low-information content displays for banners and labels. The physicist, chemical engineer, materials scientist, nanotechnologist, and biologist at all levels, as well as academicians for unique device-based applications in various fields, will benefit from this book. Readers will gain an understanding of the practical and highly sensitive business fields for specific disciplinarians. The goal is to provide readers a broad review from a materials perspective, so that teachers can provide a comprehensive review of this technology to students. This book also highlights the entire gamut of smart engineering technologies and the materials design process of fabrications from past to present and future perspectives. The syllabi of various technical universities and research institutes are examined, explaining the basic perceptions of this emerging field. In science today, the major focus of research and development in synthetic materials and spectroscopic analysis broadly deals with materials on the atomic and molecular scales. The vision for the future is to move beyond these already existing applications and explore new realms of electronic applications"--




Polymers and Nanomaterials for Gene Therapy


Book Description

Polymers and Nanomaterials for Gene Therapy provides the latest information on gene therapy, a topic that has attracted significant attention over the past two decades for the treatment of inherited and acquired genetic diseases. Major research efforts are currently focused on designing suitable carrier vectors that compact and protect oligonucleotides for gene therapy. The book explores the most recent developments in the field of polymer science and nanotechnology, and how these advancements have helped in the design of advanced materials. Non-viral vector systems, including cationic lipids, polymers, dendrimers, peptides and nanoparticles, are potential routes for compacting DNA for systemic delivery. However, unlike viral analogues that have no difficulty in overcoming cellular barriers and immune defense mechanisms, non-viral gene carriers consistently exhibit significant reduced transfection efficiency due to numerous extra- and intracellular obstacles. Therefore, biocompatibility and potential for large-scale production make these compounds increasingly attractive for gene therapy. This book contains chapters on the engineering of polymers and nanomaterials for gene therapy, and how they can form complexes with DNA and avoid both in vitro and in vivo barriers. Other chapters describe in vitro, ex vivo, in vivo gene therapy studies, and the current issues affecting non-viral gene therapy. - Explores current challenges in the research of genetic diseases - Discusses polymers for gene therapy and their function in designing advanced materials - Provides examples of organic and inorganic nanomaterials for gene therapy - Includes labeling, targeting, and assays - Looks at characterization, physico-(bio)chemical properties, and applications




Viral Nanotechnology


Book Description

Viral Nanotechnology presents an up-to-date overview of the rapidly developing field of viral nanotechnology in the areas of immunology, virology, microbiology, chemistry, physics, and mathematical modeling. Its chapters are by leading researchers and practitioners, making it both a comprehensive and indispensable resource for study and research.Th




Microbial Nanotechnology: Green Synthesis and Applications


Book Description

This book introduces the principles and mechanisms of the biological synthesis of nanoparticles from microorganisms, including bacteria, fungi, viruses, algae, and protozoans. It presents optimization processes for synthesis of microbes-mediated nanoparticles. The book also reviews the industrial and agricultural applications of microbially-synthesized nanoparticles. It also presents the medical applications of green nanoparticles, such as treating multidrug-resistant pathogens and cancer treatment. Further, it examines the advantages and prospects for the synthesis of nanoparticles by microorganisms. Lastly, it also presents the utilization of microbial-synthesized nanoparticles in the bioremediation of heavy metals.




Biodefense in the Age of Synthetic Biology


Book Description

Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.