Viral Nanotechnology


Book Description

Viral Nanotechnology presents an up-to-date overview of the rapidly developing field of viral nanotechnology in the areas of immunology, virology, microbiology, chemistry, physics, and mathematical modeling. Its chapters are by leading researchers and practitioners, making it both a comprehensive and indispensable resource for study and research.Th




Viruses and Nanotechnology


Book Description

Nanotechnology is a collective term describing a broad range of relatively novel topics. Scale is the main unifying theme, with nanotechnology being concerned with matter on the nanometer scale. A quintessential tenet of nanotechnology is the precise self-assembly of nanometer-sized components into ordered devices. Nanotechnology seeks to mimic what nature has achieved, with precision at the nanometer level down to the atomic level. Nanobiotechnology, a division of nanotechnology, involves the exploitation of biomaterials, devices or methodologies in the nanoscale. In recent years a set of b- molecules has been studied and utilized. Virus particles are natural nanomaterials and have recently received attention for their tremendous potential in this field. The extensive study of viruses as pathogens has yielded detailed knowledge about their biological, genetic, and physical properties. Bacterial viruses (bacte- ophages), plant and animal eukaryotic viruses, and viruses of archaea have all been characterized in this manner. The knowledge of their replicative cycles allows manipulation and tailoring of particles, relying on the principles of self-assembly in infected hosts to build the base materials. The atomic resolution of the virion structure reveals ways in which to tailor particles for higher-order functions and assemblies.




Viral Nanoparticles


Book Description

This book overviews the applications of viral nanoparticles (VNPs) in areas ranging from materials science to biomedicine. It summarizes the many different VNP building blocks and describes chemistries that allow one to attach, entrap, or display functionalities on VNPs. The book outlines the strategies for the construction of 1-, 2-, and 3-D arrays, highlights the achievements in utilizing VNPs as tools for novel biosensors and nanoelectronic devices, and describes efforts in designing VNPs for biomedical applications, including their use as gene delivery vectors, novel vaccines, imaging modalities, and applications in targeted therapeutics.




Virus-Based Nanomaterials and Nanostructures


Book Description

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.




Viral Nanoparticles


Book Description

This book overviews the applications of viral nanoparticles (VNPs) in areas ranging from materials science to biomedicine. It summarizes the many different VNP building blocks and describes chemistries that allow one to attach, entrap, or display functionalities on VNPs. The book outlines the strategies for the construction of 1-, 2-, and 3-D arrays, highlights the achievements in utilizing VNPs as tools for novel biosensors and nanoelectronic devices, and describes efforts in designing VNPs for biomedical applications, including their use as gene delivery vectors, novel vaccines, imaging modalities, and applications in targeted therapeutics.




Nanotechnological Applications in Virology


Book Description

Nanotechnological Applications in Virology explores the use of nanoparticles-based technologies to fight against viruses, also discussing the use of nanoparticles in the preparation of nano masks and as sanitizing agents. The role of nanotechnology against HIV, Hepatitis, Influenza, Herpes, Ebola and Zika using rapid detection and diagnostic techniques is included, as is a brief description of SARS, MERS, the novel Coronavirus, and recent advancements in its treatment process. Other sections cover the formulation of novel nano-vaccines for the treatment and control of viral infections like HIV, Hepatitis and COVID-19. Included toxicological studies of nanoparticles provide readers with a brief overview on global scenarios regarding viral infections. Nanotechnology is the present age technology, with wide usage in different areas of medical science, including drug delivery, gene therapy, antimicrobials, biosensors and bio-labelling. Nanoparticles play a competent role as an anti-infection agent and thus act as efficient antiviral agents. Mitochondria as a Key Intracellular Target of Thallium Toxicity presents a new hypothesis that explains the decrease in antioxidant defense in thallium poisoning. In addition, the book proposes a new model for studying the transport of inorganic cations across the inner mitochondrial membrane. Readers will learn about the toxicity of thallium and its compounds, the toxicology of thallium, the toxic thallium effects on cells, and the effects of thallium on mitochondria. This book+J136 lists the pathways and mechanisms of thallium transport into cells and mitochondria. This toxicity has been analyzed at both the cellular and subcellular levels The increase in human contact with the toxic trace element thallium is associated with developments in industry, the release of this metal into the environment from various rocks, and the use of special isotope techniques for studying the vascular bed




Nanobiotechnology


Book Description

Nanobiotechnology: Microbes and Plant Assisted Synthesis of Nanoparticles, Mechanisms and Applications covers in detail the green synthesis of nanostructures of tailor-made size, shape and physico-chemical and opto-electronic properties. The rationale behind the selection of bacteria, cyanobacteria, algae, fungi, virus and medicinal plants for the synthesis of biologically active exotic nanoparticles for biomedical applications is also part of this book. It also explores metal recovery, bioconversion, detoxification and removal of heavy metals using nanobiotechnology and discusses the potential of nanobiotechnology to address environmental pollution and toxicity. The book further covers the economic and commercial aspects of such green nanobiotechnology initiatives, its current status in intellectual property rights like patents filed so far globally, technology transfers, and market potential. This information enables one to decipher the scope of biogenic nanoparticles and its prospects. Provides an overview on the general and applied aspects on nanotechnology Gives the scope of exploring bacteria, fungi, algae, virus and medicinal plants for the synthesis of exotic nanoparticles Furnishes a comprehensive report on the underlying molecular mechanisms behind the biosynthesis of nanoparticles Outlines sustainable alternative strategies of bioremediation of heavy metals, metal recovery, detoxification and bioconversion using nanobiotechnology Explores the promises of patenting, technology transfer and commercialization potential of biogenic nanoparticles




Emerging Topics in Physical Virology


Book Description

Emerging Topics in Physical Virology is a state-of-the-art account of recent advances in the experimental analysis and modeling of structure, function and dynamics of viruses. It is the first interdisciplinary book that integrates a review of relevant experimental techniques, such as cryo-electron microscopy, atomic force microscopy and mass spectrometry with the latest results on the biophysical and mathematical modeling of viruses. The book comprehensively covers the structure and physical properties of the protein envelopes that encapsulate and hence protect the delicate viral genome, their assembly and disassembly, the organization of the viral genome, infection, evolution, as well as applications of viruses in Biomedical Nanotechnology. It is an essential primer for scientists working in all aspects of virology, including the increasing use of viruses and virus-like particles in bio- and nano-technology. Its review style makes it moreover suitable for non-experts as an introduction into this exciting research area.




Virus-Based Nanomaterials and Nanostructures


Book Description

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.




Virus Hybrids as Nanomaterials


Book Description

In Virus Hybrids as Nanomaterials: Methods and Protocols expert researchers in the field detail many of the methods used to study virus for medial and nonmedical applications. These include methods and techniques for genetically engineering viruses for therapeutic purpose and vaccine production, chemically modified viruses for virus-templated nanoparticles production, and genetically engineered or chemically modified viral particles as imaging agents. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Virus Hybrids as Nanomaterials: Methods and Protocols seek to aid new researchers to get involved in this multidisciplinary area.