Visual-Inertial Sensor Fusion for Tracking in Ambulatory Environments


Book Description

Tracking a high-velocity object through a cluttered environment is daunting for even the human-observer. Vision-based trackers will frequently lose their lock on the object as features on the object become distorted or faded as a result of motion-blurring imparted by the high-velocity of the object. Moreover, the frequent occlusions as the object passes through clutter only serves to compound the issue. To boot, the usual difficulties associated with most vision-based trackers still apply such as: nonuniform illumination, object rotation, object scale changes, etc... Inertial-based trackers provide useful complementary data to aid the vision-based systems. The higher sampling rates of the inertial measurements gives invaluable information to be able to track high-speed objects. With the IMU attached to the object, the inertial measurements are immune to occlusions unlike their visual counterparts. Efficient combination of visual as well as inertial sensors into a unified framework is coined visual-inertial sensor fusion. Visual-inertial sensor fusion is a powerful tool for many industries: it allows the medical practitioners to better understand and diagnose illnesses; it allows the engineer to design more flexible and immersive virtual reality environments; and it allows the film-director to fully capture motion in a scene. The complementary nature of visual and inertial sensors is well-toted throughout these industries, the faster sampling rate of the inertial sensors fits lock-and-key with the higher accuracy of the visual sensor to unlock the potential for algorithms capable of tracking high-velocity objects through cluttered environments. Inevitably, sensor fusion is accompanied by higher algorithmic complexity and requires careful understanding of the components involved. For this reason, the approach taken in this thesis is a ground-up approach towards a complete visual-inertial system: from camera calibration all the way to handling of asynchronous sensor measurements for sensor-fusion.




VISrec!


Book Description







Visual-inertial Integration for Human Motion Tracking and Navigation in Free-living Environments


Book Description

This thesis comprises three specific goals using our developed IMU board and the camera from the imaging source company: (1) to develop a robust and real-time orientation algorithm using only the measurements from IMU; (2) to develop a robust distance estimation in static free-living environments to estimate people's position and navigate people in static free-living environments and simultaneously the scale ambiguity problem, usually appearing in the monocular camera tracking, is solved by integrating the data from the visual and inertial sensors; (3) in case of moving objects viewed by the camera existing in free-living environments, to firstly design a robust scene segmentation algorithm and then respectively estimate the motion of the vIMU system and moving objects.




Ambulatory Human Motion Tracking Using Inertial and Magnetic Sensing


Book Description

Recent advances in miniature sensors and mobile computing have fostered a dramatic growth of interest for 'ambulatory' human motion tracking. Inertial (i.e. accelerometers and gyroscopes) and magnetic sensors do not have in-the-lab measurement limitations and thus are ideal for ambulatory applications. This thesis presents ambulatory human motion tracking using inertial/magnetic sensing. In particular, the purpose of this thesis is to introduce novel orientation estimation algorithms using an inertial/magnetic sensor and demonstrate practical applications of the inertial/magnetic sensors in spinal and gait analysis. First, two quaternion-based orientation estimation algorithms were newly developed with focus on improving computational efficiency. Both algorithms deal with so-called Wahba's problem, a least squares minimization problem, to find a best fit orientation estimation solution. A major difference between them is that one is based on a deterministic approach using a Gauss-Newton method and the other is based on a stochastic approach that employs Kalman filtering. The Gauss-Newton method in the former was formulated using virtual rotation concept while the Kalman filter in the latter was designed to have a minimum-order structure, which significantly improves the computational efficiency of each algorithm. Second, a novel 3D spinal motion measurement system based on inertial/magnetic sensors was proposed. The proposed system can provide not only 3D orientations of the spine/pelvis but also temporal gait parameters, enabling a comprehensive analysis of the 3D spinal kinematics together with the gait analysis. In particular, the spinal motions during the staircase walking were compared to those during level walking using the proposed system, to fill a gap in the spinal kinematics literature. Furthermore, the system was applied to investigate low back pain effects on spinal motion during stair-climbing. This study revealed that the lumbar spinal sagittal motion during stair-climbing can provide an effective quantitative measure in the assessment of low back pain patients. In addition to the spinal motion analysis, an automatic gait event detection algorithm using shank attached inertial sensors was presented for further gait analysis. The outcomes of the research in this thesis can serve as foundation towards achieving a truly ambulatory human motion tracking system.




Robust Human Motion Tracking Using Wireless and Inertial Sensors


Book Description

Recently, miniature inertial measurement units (IMUs) have been deployed as wearable devices to monitor human motion in an ambulatory fashion. This thesis presents a robust human motion tracking algorithm using the IMU and radio-based wireless sensors, such as the Bluetooth Low Energy (BLE) and ultra-wideband (UWB). First, a novel indoor localization method using the BLE and IMU is proposed. The BLE trilateration residue is deployed to adaptively weight the estimates from these sensor modalities. Second, a robust sensor fusion algorithm is developed to accurately track the location and capture the lower body motion by integrating the estimates from the UWB system and IMUs, but also taking advantage of the estimated height and velocity obtained from an aiding lower body biomechanical model. The experimental results show that the proposed algorithms can maintain high accuracy for tracking the location of a sensor/subject in the presence of the BLE/UWB outliers and signal outages.




Sensing and Signal Processing in Smart Healthcare


Book Description

In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included.




MEMS Accelerometers


Book Description

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.




MultiMedia Modeling


Book Description

The two-volume set LNCS 8325 and 8326 constitutes the thoroughly refereed proceedings of the 20th Anniversary International Conference on Multimedia Modeling, MMM 2014, held in Dublin, Ireland, in January 2014. The 46 revised regular papers, 11 short papers and 9 demonstration papers were carefully reviewed and selected from 176 submissions. 28 special session papers and 6 papers from Video Browser Showdown workshop are also included in the proceedings. The papers included in these two volumes cover a diverse range of topics including: applications of multimedia modelling, interactive retrieval, image and video collections, 3D and augmented reality, temporal analysis of multimedia content, compression and streaming. Special session papers cover the following topics: Mediadrom: artful post-TV scenarios, MM analysis for surveillance video and security applications, 3D multimedia computing and modeling, social geo-media analytics and retrieval, multimedia hyperlinking and retrieval.




Statistical Sensor Fusion


Book Description