Volume II. Flying Qualities Flight Testing Phase. Chapter 10: High Angle of Attack


Book Description

From the designer to the pilot, everyone associated with the flying qualities of high performance military aircraft, particularly the fighter or attack variety, is or should be aware of the importance of the high angle of attack flight regime. It is here that the aircraft will spend a significant amount of its time when performing the mission for which it was designed. It is here that the aircraft must display its most outstanding performance. It is also here that the aircraft, when pushed beyond its limits of controllability, can seemingly defy all laws of physics and principles of flight with which its surprised and often bewildered pilot is acquainted. The frequency of inadvertent loss of control at high angle of attack is such that many combat aircraft pilots are becoming firmly convinced that all pilots may be divided into two categories: those who have departed controlled flight, and those who will. Most thoroughly convinced are those pilots who fall into the former category. The unfortunate fact concerning departure from controlled flight at high angle of attack is that many aircraft and pilots are lost each year due to failure to recover from the out-of-control flight condition. The circumstances surrounding the losses are varied. Departures from controlled flight may occur unintentionally during high-g maneuvers or intentionally during a nose-high deceleration to zero airspeed in an attempt to gain an advantage over an opponent in combat maneuvering; the aircraft may spin and the gyration be identified too late for recovery or a steep spiral may be mistakenly identified as a spin, causing recovery controls to be misapplied. Whatever the circumstances, departures from controlled flight result all too often in catastrophe. For this reason, test pilots in particular must be familiar with every facet of the high angle-of-attack flight regime.




Flying beyond the stall


Book Description

The X-31 Enhanced Fighter Maneuverability Demonstrator was unique among experimental aircraft. A joint effort of the United States and Germany, the X-31 was the only X-plane to be designed, manufactured, and flight tested as an international collaboration. It was also the only X-plane to support two separate test programs conducted years apart, one administered largely by NASA and the other by the U.S. Navy, as well as the first X-plane ever to perform at the Paris Air Show. Flying Beyond the Stall begins by describing the government agencies and private-sector industries involved in the X-31 program, the genesis of the supermaneuverability concept and its initial design breakthroughs, design and fabrication of two test airframes, preparation for the X-31's first flight, and the first flights of Ship #1 and Ship #2. Subsequent chapters discuss envelope expansion, handling qualities (especially at high angles of attack), and flight with vectored thrust. The book then turns to the program's move to NASA's Dryden Flight Research Center and actual flight test data. Additional tasking, such as helmet-mounted display evaluations, handling quality studies, aerodynamic parameter estimation, and a "tailless" study are also discussed.The book describes how, in the aftermath of a disastrous accident with Ship #1 in 1995, Ship #2 was prepared for its outstanding participation in the Paris Air Show. The aircraft was then shipped back to Edwards AFB and put into storage until the late 1990s, when it was refurbished for participation in the U. S. Navy's VECTOR program. The book ends with a comprehensive discussion of lessons learned and includes an Appendix containing detailed information.







Technical Information Indexes


Book Description







Volume II. Flying Qualities Phase. Chapter 6: Maneuvering Flight


Book Description

The method used to analyze maneuvering flight will be to determine a stick-fixed maneuver point (Hm) and stick-free maneuver point (H'm). These are analogous to their counterparts in static stability, the stick-fixed and stick-free neutral points. The maneuver points will also be derived in terms of the neutral points, and their relationship to cg location will be shown.




Aviation Safety and Pilot Control


Book Description

Adverse aircraft-pilot coupling (APC) events include a broad set of undesirable and sometimes hazardous phenomena that originate in anomalous interactions between pilots and aircraft. As civil and military aircraft technologies advance, interactions between pilots and aircraft are becoming more complex. Recent accidents and other incidents have been attributed to adverse APC in military aircraft. In addition, APC has been implicated in some civilian incidents. This book evaluates the current state of knowledge about adverse APC and processes that may be used to eliminate it from military and commercial aircraft. It was written for technical, government, and administrative decisionmakers and their technical and administrative support staffs; key technical managers in the aircraft manufacturing and operational industries; stability and control engineers; aircraft flight control system designers; research specialists in flight control, flying qualities, human factors; and technically knowledgeable lay readers.




NASA SP.


Book Description




The Smell of Kerosene


Book Description

This book puts the reader in the pilot's seat for a "day at the office" unlike any other. The Smell of Kerosene tells the dramatic story of a NASA research pilot who logged over 11,000 flight hours in more than 125 types of aircraft. Donald Mallick gives the reader fascinating first-hand description of his early naval flight training, carrier operations, and his research flying career with NASA. After transferring to the NASA Flight Research Center, Mallick became involved with projects that further pushed the boundaries of aerospace technology. These included the giant delta-winged XB-70 supersonic airplane, the wingless M2-F1 lifting body vehicle, and triple-sonic YF-12 Blackbird. Mallick also test flew the Lunar Landing Research Vehicle and helped develop techniques used in training astronauts to land on the Moon.