Vortex Flow


Book Description

Vortex Flow presents a detailed description of the natural phenomena of vortices, fundamental concepts, and applications of the vortex flows. Numerous figures and examples illustrate concepts presented in this interesting book for mechanical, chemical, powder, and aeronautical engineers and engineering students.




Encountering the Book of Isaiah


Book Description

This clear and readable introduction provides guidance on the history and theology of the book of Isaiah.







Vortex Flows and Related Numerical Methods


Book Description

Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.




Fluid Vortices


Book Description

Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.




Vortical Flows


Book Description

This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.




Vortex Rings


Book Description

Vortex flow is one of the fundamental types of fluid and gas motion. These flows are the most spectacular in the form of concentrated vortices, characterized by the localization of vorticity (curl of velocity) in bounded regions of a space, beyond which the vorticity is either absent or rapidly falls down to zero. Concentrated vortices are often observed in nature, exemplified by atmospheric cyclones, whirlwinds and tornados, oceanic vortices, whirlpools on a water s- face, and ring vortices caused by explosive outburst of volcanoes. In technical - vices concentrated vortices form when flow separates from sharp edges of flying vehicles and ships. Among these are vortices flowing off the ends of airplane wings, and intentionally generated vortices for intensification of burning in c- bustion chambers, vortices in cyclonic devices used for mixing or separation of impurities in fluids and gases. One such remarkable and frequent type of conc- trated vortices is a vortex ring which constitutes a vortex tube closed into a t- oidal ring moving in a surrounding fluid like an isolated body out of contact with solid boundaries of the flow region if such boundaries exist. Formation and motion of vortex rings are important part of the dynamics of a continuum medium and have been studied for more than a century.










Rotating Flow


Book Description

Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources